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ABSTRACT: Seawater pollution is a significant global environmental problem. Various 

technologies and methods have been used to remove the contaminants found in saltwater.  

This experimental study investigates the degradation of contaminants present in seawater 

using solar photocatalysis, where a combination of TiO2 and ZnO was used.  The effects 

of catalyst dosage, pH, and reaction duration were assessed using percentage removal 

efficiencies of total organic carbon (TOC), chemical oxygen demand (COD), biological 

oxygen demand (BOD), and biodegradability (BOD/COD). Biodegradability is essential 

for removing pollutants from saltwater and plays a vital role. The higher the 

biodegradability, the more efficient the treatment procedure will be. The most effective 

percentage reduction rates from the experimental data obtained were TOC=59.80%, 

COD=75.20%, BOD=23.94%, and biodegradability=0.055. For modeling, optimizing, 

and assessing the effects of parameters, the Design Expert based on Box Behnken design 

(RSM-BBD) and a predictive model based on the MATLAB adaptive neuro-fuzzy 

inference system (ANFIS) tools were used. The coefficient of determination R2 was found 

to be 0.977 for the RSM-BBD model and 0.99 for the ANFIS model. According to the 

RSM-BBD design, the maximum percentage pollutant elimination efficiencies were found 

to be TOC=55.4, COD=73.4, BOD=23.70%, and BOD/COD=0.054, but for the ANFIS 

model, they were TOC=59.4, COD=75.4, BOD=24.1%, and BOD/COD=0.055. It was 

discovered that the ANFIS model outperformed RSM-BBD in process optimization. 

ABSTRAK: :  Pencemaran air laut adalah masalah alam sekitar global yang ketara. 

Pelbagai teknologi dan kaedah telah digunakan bagi menyingkirkan pencemaran yang 

dijumpai dalam air laut. Kajian eksperimen ini menilai degradasi pencemaran yang hadir 

dalam air laut menggunakan fotopemangkin, di mana kombinasi TiO2 dan ZnO digunakan. 

Kesan dos pemangkin, pH, dan tempoh reaksi dipantau menggunakan peratus kecekapan 

penyingkiran jumlah karbon organik (TOC), keperluan kimia oksigen (COD), keperluan 

biologi oksigen (BOD), dan kebolehdegradasian (BOD/COD). Kebolehdegradasian 

adalah sangat penting bagi menyingkirkan bahan cemar dari air laut dan berperanan 

penting. Semakin tinggi kebolehdegradasian, semakin cekap prosedur rawatan. Peratus 

kadar pengurangan yang paling berkesan daripada data eksperimen adalah didapati pada 

TOC=59.80%, COD=75.20%, BOD=23.94%, dan biodegradasi=0.055. Bagi mengkaji 

kesan parameter terhadap model, kadar optimum, dan memantau keberkesanan parameter, 

kaedah Pakar Reka Bentuk pada rekaan Kotak Behnken (RSM-BBD) dan model ramalan 

berdasarkan sistem pengaruh menggunakan sistem MATLAB iaitu Inferens Neural-Fuzi 

Boleh Suai (ANFIS) digunakan. Pekali penentu R2 terhasil pada 0.977 bagi model RSM-
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BBD dan 0.99 pada model ANFIS. Berdasarkan reka bentuk RSM-BBD, peratus 

maksimum keberkesanan penyingkiran bahan cemar dijumpai pada TOC=55.4, 

COD=73.4, BOD=23.70%, dan BOD/COD=0.054, tetapi bagi model ANFIS, TOC=59.4, 

COD=75.4, BOD=24.1%, dan BOD/COD=0.055. Model ANFIS adalah lebih berkesan 

daripada model RSM-BBD dalam proses pengoptimuman. 

KEYWORDS: solar photocatalysis; saltwater/seawater; titanium dioxide; zinc oxide; 

biodegradability; RSM-Box Behnken; ANN-Anfis 

1. INTRODUCTION 

The requirement for fresh and clean water has been increasing day by day. The demand 

for or availability of drinkable water is a major concern due to the global population rise. 

Seawater is a major source of freshwater generation, but it also contains several organic, 

inorganic, and biological contaminants in addition to salt. Before seawater is given to the 

primary desalination process, these contaminants must be treated. Many traditional 

techniques are employed to treat the contaminants found in seawater [1], but recently, 

sophisticated oxidation techniques have been used to remediate the contaminants in saline 

water. 

Natural solar light and artificial UV radiation sources were utilized in heterogeneous 

photocatalysis using TiO2 as a photocatalyst. Utilizing photocatalytic reactors, organic 

contaminants, such as phenol and benzoic acid, were removed from seawater. A 

semiconductor, such as TiO2, SnO2, ZnO, and PbO, served as a photocatalyst in this process 

and was exposed to artificial and natural light [2]. Seawater contaminants can be degraded 

by solar photocatalysis, which has been well-defined by the process of solar photocatalysis 

mechanism [3,4].  

Numerous studies have used the solar photocatalytic degradation mechanism to remove 

contaminants found in saltwater. A batch recirculation reactor system was used to study the 

photo degradation of contaminants found in saltwater. By assessing different parameters 

such as TOC, total dissolved solids (TDS), COD, and total inorganic carbon, the 

performance of photocatalytic degradation was assessed combining TiO2 photo catalyst and 

polyamide. The solar photo degradation phase saw a significant parameter drop [5]. Using 

a Yb-TiO2-rGO photo catalyst, phenol in saline water was significantly reduced throughout 

the sun photocatalytic degradation process. To prevent salt ions from adhering to the 

photocatalyst, ethylene glycol was grafted onto the catalyst [6]. A photocatalyst (TiO2) that 

had been immobilized in plug flow reactors was used with an artificial light source (UV 

lamp) to investigate the breakdown of the model of organic molecule benzoic acid to gauge 

the photocatalytic performance. Significant benzoic acid decomposition was seen using plug 

flow reactors of various diameters. Under various circumstances, photocatalysis has been 

used and shown to be a viable technique for purifying phenolic wastewater. In a batch 

reactor with a recycle stream, photocatalysis was used to completely mineralize the phenol 

[7]. Researchers looked at the efficiency of photocatalytic degradation of diesel impurities 

present in saltwater by studying the sun photocatalytic destruction of those pollutants. The 

initial concentration of diesel contaminants, pH, catalyst ratio, and dosage were changed. 

The visible photocatalytic degradation mechanism resulted in a 78.7% degradation of diesel 

pollutants [8]. The water produced by the oil industry, which contained both organic and 

inorganic contaminants, underwent nano-solar photocatalysis. Using a TiO2 catalyst and free 
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solar energy, experiments were carried out in batch and continuous reactors. It was found 

that the amount of contaminants in oil-produced water had significantly decreased [9].   

A thorough overview of numerous photocatalytic research using saltwater and saline 

industrial effluent, including oil-generated water, was presented by Nayeem et al. [10]. 

Photocatalysis refers to the acceleration of a photochemical reaction in the presence of a 

catalyst. The photocatalytic efficiency in photo-generated catalysis depends on the catalyst's 

ability to generate electron-hole pairs and free radicals capable of secondary reactions. 

Furthermore, it is employed in numerous processes known as the Advanced Oxidation 

Process (AOP) [11]. The photocatalytic reaction breaks down the harmful molecules 

without leaving any residue, obviating the need to transport sludge to a landfill. An 

additional advantage is that the catalyst has a long lifespan, and there is no requirement for 

chemicals in the process, keeping the operation simple and financially viable [12]. An 

oxidant that absorbs UV light and reacts with water to generate highly reactive OH radicals 

could be introduced during UV irradiation to optimize elimination efficiency. The most 

common oxidants are hydrogen peroxide (H2O2) and ozone. During the experiments, it was 

revealed that the absorbance accuracy of H2O2 is dependent on its concentration. Therefore, 

the efficiency of the water treatment system increases with H2O2 concentration [13]. 

For low boron concentrations in genuine desalinated seawater, UiO-66-NH2/GO/Fe3O4 

shows good adsorption uptake (22.46 mg/g). A novel technique of magnetic composite with 

a metal-organic frame was employed in the desalination of salt water to remove boron. The 

single-factor design model was carried out to study the ideal parameter settings using the 

response surface approach and the MATLAB program ANN tool. The maximal 

temperature, 318 K, pH 3.38, and dose of 99.1 mg/L were discovered. Both approaches have 

demonstrated a good ability to anticipate the adsorption process [14] accurately. For the 

statistical analysis, Hashemi et al. [15] used pipette-tip solid phase extraction with 

molecularly imprinted polymer and an RSM-BBD model with seven variables at three levels 

to determine the presence of methyl red in seawater. The computed average recoveries 

ranged from 84.0 to 98.0 percent, with a mean of 2.5 - 6.7 percent. For the breakdown of 

tetracycline, a TiO2 photo catalyst in powdered form was used to treat contaminants found 

in seawater. Due to the strong visible light reaction, it is observed that after 20 hours, the 

removal of tetracycline from seawater by PU sponge-filled spheres had achieved 80%, 

offering the greatest performance [16]. The necessary studies to investigate the impacts of 

yeast extract, whey, heating temperature, and Caspian Sea water were designed using a 

central composite design. 

According to the response surface method, the maximal specific urease activity (16.50 

mm urea.min-1. OD-1) could be attained with 9.94 gL-1 of yeast extract, 23.43 gL-1 of whey, 

128.6 °C of heating, and no seawater [17].  The ANN has the advantage of not requiring the 

central composite design before experimentation and being a continuously improving 

prediction approach as more data becomes available. Still, the RSM has a modest advantage 

in model accuracy [18]. A three-factor and three-level Box Behnken design was used to 

investigate the novel core-shell micro-structured nanocomposites with inner seawater for 

syngas/air fire prevention. Two mathematical models were created to examine the 

interactions between the parameters for salt rejection and to permeate flow in RO 

membranes [19]. Ions in seawater physically and chemically interact with mineral species, 

making the flotation and thickening processes harder to operate. ANOVA and RSM-based 

modeling are used to identify the variables that affect the variable of interest, which is then 
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optimized. The design of experiments (DOE) establishes the number of experiments needed 

and the values of the independent and dependent variables [20]. During training, the 

developed ANN model demonstrated a good agreement between prediction and 

experimental data, with good statistical metrics values (RMSE, MAE, and AARD). 

According to ANN, permeate conductivity, flow rate, and recovery were predicted with 

coefficients of determination of 0.969, 0.942, and 0.963, respectively [21].   

The optimization of experimental variables to ascertain the impact of independent 

factors on the responses has frequently used response surface methods. The Box Behnken 

tool was used to reduce the number of experiments in RSM with the best response. The pH 

concentration was found to have the best COD elimination percentage [22, 23]. The 

establishment of a linear or nonlinear relationship between water salinity and its controlling 

factors (such as water table, evaporation, and distance to saltwater bodies) and the use of 

those relationships for the prediction of water salinity for regions with low data points have 

shown the capacity of ML models to model groundwater salinity [24]. The independent 

variables considered in ANN were pH, POME concentration, pressure, time, and one hidden 

layer and output layer. It was noted that in the filtration process, the ANN accurately 

displays the projected optimum values near the experimental data [25,26]. Response surface 

approach and a genetic algorithm tool were used to undertake statistical modeling in order 

to obtain the desirability function and forecast values. It was found that the RSM-GA 

predicted the experimental values accurately [27,28]. Utilizing RSM (Design Expert) and 

ANN-LM, a statistical model with three independent variables was created. The removal 

elimination of COD, TOC, BOD, and biodegradability were predicted by this model [29].   

Numerous studies have used the MATLAB tool to predict response variables using 

ANN, ANFIS, FIS, and other models. A fuzzy system is the first stage in building a network 

of fuzzy systems and can be created by "if-then" rules. The mathematical techniques are 

known as the recurrent network (RN), time-lagged recurrent network (TLRN), ANN, and 

ANFIS are directly derived from the workings of the human brain [30]. These methods are 

promising for simulating response variables and can also be used with nonlinear systems 

due to their simplicity. When the relationship between the input and output variables is 

unknown, and it is impossible to identify the system by mathematical problem, the robust 

application known as the fuzzy inference system was utilized [31].  

Utilizing RSM-BBM and ANN-ANFIS, a few studies have been published on 

optimizing the removal of contaminants from saltwater using solar photocatalytic 

degradation. To find the ideal values, polynomial quadratic models were constructed. It was 

discovered that the central composite design was a reliable and accurate forecast. With five 

input variables, a Genetic Algorithm was used as a tool in ANN and RSM [32]. The term 

"biodegradability" refers to the BOD/COD ratio. The elimination process of contaminants 

from seawater depends on biodegradability and a higher biodegradability can increase the 

effectiveness of the treatment approach. In addition, there will be a significant decrease in 

fouling characteristics during the seawater treatment process due to the high 

biodegradability. However, no research has reported the natural sunlight-based 

biodegradability of saltwater combining photocatalysts with RSM-BBD and ANFIS 

applications. The proposed approach uses the combination of TiO2 and ZnO photocatalysis 

processes to examine the biodegradability of saline water. The process was validated using 

RSM-BBD and ANFIS to assess the model and optimize and investigate the relationship 

between the parameters.  
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2. MATERIALS AND METHODS  

A 5 L sample of salt water was taken at a depth of 10 m from the water's surface, 2.3 

km from Khobar Beach in the Kingdom of Saudi Arabia. Commercial TiO2 Degussa P-25 

(80% A-20% R) from Evonik Industries in Germany, which is 99.9% pure, and ZnO (99.9 

percent pure, APS:20 nm) from mkNano in Canada were used as the catalysts total carbon 

analyzer (Shimadzu), thermal scientific Orion COD 125, and AQ 400 were used to measure 

COD and TOC, respectively. Thermo Fisher Scientific's BOD incubator with a complete 

water analysis kit (Eutech PCD 650) was used to measure the DO and BOD estimation, and 

a pH meter (JENWAY 3520) was used to measure the pH value. Table 1 displays the initial 

properties of seawater. 

2.1  Experimental Procedure  

Figure 1 depicts an experimental setup sketch for the batch investigations. As a batch 

reactor, a 1500 mL glass beaker with a magnetic stirrer was utilized. A 1000 mL sample of 

seawater was obtained in a batch reactor setup, and catalysts TiO2 and ZnO were added. 

Between 10:00 AM to 2:00 PM, the photocatalytic reaction was carried out in the open air 

while stirring with a magnetic stirrer. At regular intervals, the samples were brought out for 

examination. The measured parameters were calculated by percentage removal efficiencies 

using equation 1. 

Percentage removal = 
(Po− Pf) 

Po
x100                                                               (1)     

where, P0 and Pf are the starting and final concentrations in mg/L.                  

Table 1: Initial parameters for a seawater sample 

Parameter  Values 

TOC (mg/L) 2.74 

COD (mg/L) 111 

BOD (mg/L) 1.75 

pH 8.665 

Biodegradability, BOD/COD 0.0157 

 

Fig. 1: The batch reactor's experimental setup. 
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2.2  Statistical Analysis Theoretical Model Description 

2.2.1 RSM-Box Behnken Statistical Modelling 

Design Expert response surface methodology is one of the major strategies for detecting 

and illustrating the cause-and-effect relationship between genuine average responses and 

input control variables influencing responses. For the statistical experimental designs, 

modelling approaches, regression modelling, prediction, and optimization, the Design-

Expert version-11.1-2.0, State-Ease Inc. MN, USA-based Box Behnken Design of response 

surface methodology was used. RSM combines mathematical methods with statistical 

analysis to fit the second-order or quadratic model. The Box Behnken Design only needs 

three levels of each component, such as lower, mid, and upper level, with randomized type, 

in contrast to the central composite design, which needs five levels of factors. BBD offers 

greater refining, optimization, and precision than CCD because it is almost rotatable and 

requires fewer experimental runs. After essential factors are found during the screening of 

factorial trials, it is also utilized to investigate the effects of quadratic factors. The phases in 

the RSM-BBM method's strategy are shown in Fig. 2. In the RSM explained by equation 2, 

the Box Behnken Design utilized the generalized model equation for the second-order 

polynomial [33]. 

Y = (A0) + ∑ (Aixi) + ∑ (Aii xi
2) + ∑ (Aijxixj)                                                                             (2)  

The input variables (i) and (j) are coded values in this case. The parameter or quadratic 

value is Xi2. The linear, interaction terms, intercept, linear regression, and quadratic 

coefficients for intercept are A0, Ai, Aij, and Ajj.  Y stands for the output variables, which 

include percentages of TOC, COD, BOD, and biodegradability removal efficiencies. To 

ascertain variable interaction, the statistical significance of models, and the impacts of 

research variables, ANOVA (analysis of variance) was performed. The equations in the 

quadratic-polynomial model were determined by the coefficient of determination (R2), and 

the significance of regression coefficients using the F-test was evaluated at probabilities (P) 

0.001 and 0.01. The 3-dimensional surface plots represent the maximum or ideal extraction 

conditions. An additional confirmation experiment was conducted to verify the statistical 

experimental procedures [34].   

2.2.2 ANN-ANFIS Statistical Modelling 

       In this approach, an adaptive neuro-fuzzy inference system was created using 

MATLAB programming to discover the best parameters for the percentage removal 

elimination of input and output pairs (ANFIS). The ANFIS is a standard mathematical 

tool based on artificial intelligence and is used to model complicated nonlinear problems 

utilizing artificial neural network learning and neuro-fuzzy interference techniques based 

on the Sugeno first-order system [35]. The system’s behavior can be analyzed with large 

datasets. Therefore, there is a need for system modeling to estimate the output for unseen 

datasets which fall within range or outside range. ANFIS is one of the powerful tools for 

such nonlinear time series analysis. This work uses ANFIS modeling to obtain a 

nonlinear input and output mapping. 

Additionally, it employed a hybrid learning algorithm that included the least squares 

and backpropagation learning algorithm approaches. Figure 3 shows the first-order 

Sugeno-type inference system's complete ANFIS architecture was built using three 
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inputs, four outputs, and five layers. The models were constructed using 70% training, 

30% testing, and 40% model validation [36]. 

 

Fig. 2: Procedure for RSM - Box-Behnken [34]. 

        

 

Fig. 3: Schematic diagram of Architectural Network of ANFIS model [36]. 
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Model correctness was measured using several error estimates, such as RMSE and R2. This 

ANFIS m was created using the first-order Sugeno model with fuzzy IF-THEN techniques. 

The roles of each of the five layers were described in terms of two rules (equations 3 and 4) 

in the section that follows rules 1 and 2 [37].   

Rule 1: If (x) is (A1) and (y) is (B1), then (f1) = p1 (x) + q1 (y) + (r1)                         (3) 

Rule 2: If (x) is (A2) and (y) is (B2), then (f2) = p2 (x) + q2 (y) + (r2)                (4)  

where p1, p2, q1, q2, r1, and r2 are the output coefficient functions that will be computed 

during testing, training, and validation and where x' and y' are the inputs and A1, A2, B1, and 

B2 are the fuzzy sets. 

The input variables are passed from layer 1 to layer 2, also called the independent layer or 

input layer. Node I has an adaptive node output expressed by Eq. 5 and Eq. 6. 

Oi = μai (x),   for (i) = 1, 2                          (5) 

Oi = μbi-2 (y),   for (i) =3, 4                          (6) 

Rule nodes are the second tier. Each input's independent values are multiplied by one 

another and are designated by a circle with the label "fixed nodes, non-adaptive", where wi 

is given as weights and is as follows by Eq. 7: 

Oi
2 = (wi) = (μai) (x) (μbi) (y)   for (i) =1, 2                    (7) 

The third layer with the letter N, is referred to as the layer of average nodes or the 

normalization layer by Eq. 8. 

Oi
3 = (wi) = (wi)/(w1 + w2) for (i) =1, 2                               (8) 

Layer 4 is where defuzzification occurs; it is also referred to as the layer of subsequent nodes 

because, in this layer, the output layer is coupled with the preceding layer using the Sugeno 

fuzzy function by Eq. 9.  

Oi
4 = wi ( fi) = wi [pi (x) + qi (y) + ri]    for i =1, 2                    (9) 

The output layer is the fifth and final layer. It is denoted by the node with the name "∑," 

which ultimately determines total output and does so by equation 10. 

Oi’
5 = fout = ∑wi’ (fi)                          (10) 

The final output Eq. 11 can be written as: 

f out = w1 (x) p1 + w1 (y) (q1) + w1 (r1) + w2 + (x) (p2) + w2 (y) (q2) + w2 (r2)                (11) 

It can be seen from the aforementioned Eq. 3 to Eq. 11 that the ANFIS model depends on 

the performance of specific parameters, such as the center, and must be appropriately 

calibrated. 

The design model contains 27 datasets with measured values of dosage, time, and pH. 

The ANFIS modeling has two phases: training and testing. Therefore, the dataset was 

divided into training and testing sets. The division of the dataset was obtained with random 

permutation, and the model was repeated multiple times to get the best modeling. Fuzzy C-

mean clustering with Sugeno-rule is used in the ANFIS modeling. Three individual models 

were developed to estimate three properties, i.e., TOC, COD, and BOD. The modeling needs 

an appropriate selection of various parameters, including the number of memberships, 
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clusters, iterations, and epochs. The optimum parameters are obtained by repeating the 

experiment and analyzing the error obtained in predicted values. For choosing the optimum 

model, Mean Square Error (MSE), Root Square Error (RMSE), and Correlation Coefficient 

(R2) were utilized as performance parameters. A lower value of MSE, RMSE, and a higher 

value of R2 indicates superior system modeling. Let Xp(i) is the predicted value from ANFIS 

modeling and Xt(i) is the actual experimental response. If the total data is N, then 

quantitative parameters can be calculated using the Eqs. 12-14. The independent or input 

layer in this statistical modeling of the ANFIS technique comprises three neurons, and the 

output layer has one [38]. The three ANFIS models will be created and examined for four 

output responses in this investigation, including TOC, COD, BOD, and BOD/COD, 

respectively. All of the model’s statistical parameters were compared, and the following 

equations below [39] can be used to assess the trained network's ultimate performance: 

Root mean square error (RMSE) = √  
1

𝑁
∑ [𝑋𝑝, 𝑖′ − 𝑋𝑡, 𝑖]𝑁

𝑖′=1 ²                       (12) 

Mean square error (MSE) = 
1

𝑁
 ∑ [(𝑋𝑝, 𝑖′ − 𝑋𝑡, 𝑖′)]2𝑁

𝑖′=1
                                   (13) 

Standard error (SE) = 𝑆 =  √
1

𝑁−1
∑ [(𝑋𝑝 − 𝑋𝑡̂)𝑁

𝑖=1 ]                                                        (14) 

3.   RESULTS AND DISCUSSION 

Equation 1 was employed to calculate the experimental data's percentage elimination 

efficiencies and biodegradability. 

3.1 Effect of Combined Catalyst TiO2 and ZnO Dosage 

Figure 4 shows the combined TiO2 and ZnO photocatalyst dose variation for the 

percentage elimination efficiency of reactions like TOC, COD, BOD, and biodegradability. 

The reactants were charged into the batch reactor, thoroughly mixed, and the photocatalyst 

concentration was gradually increased to 4 g/L maximum. Every hour, samples were 

collected, and the parameters were examined.   

  

Fig. 4: Percent (%) elimination 

efficiency versus photocatalyst dosage. 

Fig. 5: Biodegradability (BOD/COD) 

versus photocatalyst dosage. 

The parameter’s percentage increases were analyzed, and the final data was plotted [3]. 

It was discovered that there was a significant increase in TOC, COD, and BOD up to 4 g/L 

of dosage of combination photocatalyst due to an increase in photonic energy availability 

from 10:00 AM to 2 PM. Furthermore, it was discovered that the degradation of pollutants 
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appears on the greater side at higher dosages of combination catalysts, which could be 

attributed to the availability of more active sites on the catalyst [1]. The highest percentage 

removal efficiency was reported to be 46.98, 49.3, and 20.23 percent for TOC, COD, and 

BOD at a dosage of 4 g/L, a reaction time of 300 min, and a pH of 9. Nevertheless, as shown 

in Fig. 5, biodegradability was found to be 0.045. 

3.2 Effect of Reaction Time  

Figure 6 shows the output variable’s percentage removal efficiencies, depicted with 

reaction times. The reaction time steadily grew from 0 to 180 minutes before rapidly 

decreasing to 300 minutes [13]. TOC and COD increase sharply up to 180 min and decrease 

at 300 min [2]. The highest percentage efficiency for TOC, COD, and BOD were determined 

to be 60, 75.2 and 24% respectively, for reaction times of 180 minutes, dosages of 4 g/L and 

pH values of 9 and 0.05 for biodegradability Fig. 7. 

  

Fig. 6: Percent (%)% elimination 

efficiency versus reaction time. 

Fig. 7: Biodegradability (BOD/COD) 

versus reaction time. 

3.3 Effect of Percentage Removal Efficiency versus pH 

Figure 8 displays the output response’s percentage elimination efficiencies 

concerning pH value at various variations [4]. It was reported that the maximum removal 

efficiencies were found to be TOC = 47, COD = 49.2, and BOD = 20.23 %, respectively 

[13]. Whereas biodegradability = 0.045 at pH = 9, reaction time = 300 minutes and 

dosage of combined catalyst = 4 g/L as shown in Fig. 9.  

  

Fig. 8: % elimination efficiency versus pH. Fig. 9: Biodegradability (BOD/COD) versus pH. 

3.4  RSM-Box Behnken Design Model Studies 

In this method, Stat-Ease Inc.'s Design-Expert statistical software program, which is 

solely dedicated to doing the design of experiments (DOE), was used in the research. We 
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can perform comparative testing, screening, characterization, optimization, resilient 

parameter design, mixture designs, and integrated designs. A combination of three 

independent parameters T = pH, R = Dosage and S = Time, based on the Box Behnken 

Design model technique, was utilized. A quadratic polynomial surface methodology model 

statistical analysis was used according to Eq. 15 of BBD and a total of 15 experiments were 

found under the randomized subtype, as shown in Table 2. 

N = 2 (K’) (K’ - 1) + (C0)                  (15) 

where (K’) = number of independent variables such as combined dosage, reaction time, and 

pH and Co = number of center points.  

The highest and lowest variable’s coded values were assigned as positive 1 and negative 

1, as indicated in Table 3. These coded equations are extremely useful for identifying 

response factors by comparing factor coefficients.  

Table 2: Experimental factors RSM-BBD method 

Ver  11.1.1.0   

Type of Study RSM-BBD Subtype Randomized type 

Type of Design Box-Behnken Design Exp. Runs 15 

Model Quadratic polynomial Blocks No Blocks 

Time (mins) 4.00   

Table 3: Independent variables employed 

Factors Independent 

Variable 

Units Type Min. Max. Coded 

Low 

Coded 

High 

Mean Std. 

Dev. 

R T : pH  Numeric 6 9 -1 ↔ 6 +1 ↔ 9 7.5 1.13 

S R : Dosage (g/L) Numeric 1 4 -1 ↔ 1 +1 ↔ 4 2.5 1.13 

T S : Time (Minutes) Numeric 60 300 -1 ↔ 60 +1 ↔ 300 180 90.71 

The findings of the analysis of variance (ANOVA) for all the model responses, such as 

TOC, COD, BOD and biodegradability, are presented in Table 4-7. Using the ANOVA 

together with additional data like F-value, acceptable precision, coefficient of variance, 

probability value (Prob>F), and lack of fit, the model's validity and statistical significance 

(p<0.05) were assessed. The F-values of dependent variables TOC, COD, BOD and 

BOD/COD calculated were 14.2, 30.0, 43.3 and obtained P-values were 0.0047, 0.0001, 

0.0003, respectively. The F-value and Prob>F values for the models and their independent 

parameters were significant because their p-values were less than 0.05, as indicated in 

Tables 4-7. Additionally, there was a 0.01 percent probability that noise could cause such a 

high F-value.  Because they are not necessary to maintain the model hierarchy, model terms 

with p-values > 0.05 (not significant) were not taken into account via model reduction to 

improve the models [22]. The mathematical statistic model's coefficient of determination R2 

predicted R2, adjusted R2, and determined R2 values for the desired responses of TOC, COD, 

BOD, and biodegradability were found to be 0.9623, 0.995, 0.9818 and 0.9873, respectively. 

According to adequate precision, the required responses were determined to be 12.80, 37.91, 

17.86 and 19.95, all of which are more than 4. These values are utilized to calculate the 

signal-to-noise ratio and indicate that the empirical model has an appropriate signal and may 

be used to explore the design space. The R2 value is more than 0.977, which is close to 1, 
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indicating that the model fits the data well and shows a strong correlation between the 

experimental and anticipated values [25]. 

Table 4: Analysis of Variance results for TOC elimination 

Source Sum of Squares Degree of freedom Avg. Square F-value P-value  

Design Model 3725.83 9 413.98 14.18 0.0047 significant 

R: Dosage 2086.23 1 2086.23 71.44 0.0004  

S: Time 823.43 1 823.43 28.20 0.0032  

T: pH 54.19 1 54.19 1.86 0.2313  

RS 30.30 1 30.30 1.04 0.3551  

RT 0.0012 1 0.0012 0.0000 0.9951  

ST 0.0942 1 0.0942 0.0032 0.9569  

R² 3.81 1 3.81 0.1305 0.7327  

S² 661.21 1 661.21 22.64 0.0051  

T² 82.13 1 82.13 2.81 0.1544  

Residual 146.01 5 29.20    

Lack of Fit 137.34 3 45.78 10.56 0.0877 not significant 

Pure Error 8.67 2 4.33    

Cor Total 3871.84 14     

Table 5: Analysis of Variance results for COD elimination 

Source Sum of Squares Degree of 

freedom 

Avg. Square F-value P-value 
 

Design Model 3813.46 9 423.72 121.92 < 0.0001 significant 

R: Dosage 2314.12 1 2314.12 665.88 < 0.0001  

S: Time 0.0189 1 0.0189 0.0054 0.9441  

T: pH 42.76 1 42.76 12.31 0.0171  

RS 68.14 1 68.14 19.61 0.0068  

RT 0.6833 1 0.6833 0.1966 0.6760  

ST 1.16 1 1.16 0.3346 0.5880  

R² 180.73 1 180.73 52.01 0.0008  

S² 1267.51 1 1267.51 364.72 < 0.0001  

T² 2.46 1 2.46 0.7078 0.4385  

Residual 17.38 5 3.48    

Lack of Fit 16.71 3 5.57 16.71 0.0570 not significant 

Pure Error 0.6667 2 0.3333    

Cor Total 3830.84 14     
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Table 6: Analysis of Variance results for BOD elimination 

Source Sum of 

Squares 

Degree of 

freedom 

Avg. Square F-value P-value 
 

Design Model 295.92 9 32.88 29.95 0.0008 significant 

R: Dosage 28.42 1 28.42 25.89 0.0038  

S: Time 84.98 1 84.98 77.42 0.0003  

T: pH 25.63 1 25.63 23.35 0.0047  

RS 1.02 1 1.02 0.9277 0.3797  

RT 0.2868 1 0.2868 0.2613 0.6310  

ST 0.0001 1 0.0001 0.0001 0.9928  

R² 2.56 1 2.56 2.33 0.1876  

S² 154.89 1 154.89 141.11 < 0.0001  

T² 0.2232 1 0.2232 0.2034 0.6709  

Residual 5.49 5 1.10    

Lack of Fit 4.82 3 1.61 4.82 0.1766 not significant 

Pure Error 0.6667 2 0.3333    

Cor Total 301.41 14     

Table 7: Analysis of Variance results for biodegradability 

Source Sum of 

Squares 

Degree of 

freedom 

Avg. Square F-value P-value 
 

Design Model 0.0021 9 0.0002 43.28 0.0003 significant 

R: Dosage 0.0018 1 0.0018 338.13 < 0.0001  

S: Time 3.510E-07 1 3.510E-07 0.0656 0.8081  

T: pH 0.0000 1 0.0000 2.81 0.1542  

RS 8.959E-07 1 8.959E-07 0.1674 0.6994  

RT 6.455E-06 1 6.455E-06 1.21 0.3222  

ST 6.172E-08 1 6.172E-08 0.0115 0.9187  

R² 0.0000 1 0.0000 2.86 0.1517  

S² 0.0002 1 0.0002 40.62 0.0014  

T² 0.0000 1 0.0000 7.95 0.0371  

Residual 0.0000 5 5.352E-06    

Lack of Fit 0.0000 3 3.364E-06 0.4037 0.7684 not significant 

Pure Error 0.0000 2 8.333E-06    

Cor Total 0.0021 14     

To accommodate the experimental findings from the design runs carried out in 

connection with the configured Box Behnken Design, the response surface technique 

designs were either adopted or modified. Table 8 shows the responses of percentage 

elimination efficiencies of dependent variables. The RSM-BBD coded and actual 

components in terms of model equations were quadratic models [27], where R stands for 

dosage, S for reaction time, and T for pH level. The other terms, such as RS, RT, and TS, 

are the interaction terms. The square terms of dosage, reaction time, and pH were designated 

by R2, S2, and T2, respectively. These equations can be used to anticipate responses for a 

given amount of each component, and coded factor equations help to determine the relative 
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effect factors by comparing factor coefficients. The actual coded equations, however, cannot 

be used for determination since the coefficients are scaled to accommodate the units of each 

factor rather than being at the center of the design space [28].   

Table 8: Coded and Actual equations for all the responses 

  Equations with coded factors Equations with actual factors 

TOC 

elimination 

(%) 

= + 40.33 + 16.15 (R) + 10.15 (S) + 2.60 (T) 

– 2.75 (RS) + 0.0173 (RT) – 0.1534 (ST) + 

1.02 (R2) – 13.38 (S2) – 4.72 (T2).  

 = - 167.89300 + 11.20248 (R) + 0.463710 (S) 

+ 33.31105 (T) – 0.015289 (RS) + 0.007694  

(RT) – 0.000852 (ST) + 0.451526 (R2) - 

0.000929 (S2) – 2.09612 (T2) 

COD 

elimination 

(%) 

 = + 62.33 + 17.01 (R) - 0.0486 (S) + 2.31 

(T) – 4.13 (RS) – 0.4133 (RT) – 0.5392 (ST) 

– 7.00 (R2) – 18.53 (S2) – 0.8162 (T2) 

= - 76.83403 + 32.39084 (R) + 0.542583 (S) 

+ 7.98120 (T) – 0.022929 (RS) – 0.183687 

(RT) – 0.002996 (ST) – 3.10948 (R2) – 

0.001287 (S2) - 0.362761 (T2)  

BOD 

elimination 

(%) 

= + 21.33 + 1.88 (R) + 3.26 (S) + 1.79 (T) – 

0.5045 (RS) - 0.2678 (RT) – 0.0050 (ST) – 

0.8320 (R2) – 6.48 (S2) – 0.2459 (T2) 

= - 22.13268 + 4.50268 (R) + 0.195879 (S) + 

3.12508 (T) – 0.002803 (RS) – 0.119007 (RT) 

+ 0.000028 (ST) – 0.369756 (R2) – 0.000450 

(S2) - 0.109285 (T2)   

BOD/COD 

= + 0.0417 + 0.0150 (R) + 0.0002 (S) + 

0.0014 (T) - 0.0005 (RS) + 0.0013 (RT) - 

0.0001 (ST) – 0.0020 (R2) - 0.0077 (S2) - 

0.0034 (T2) 

= - 0.089911 + 0.010788 (R) + 0.000205 (S) 

+ 0.022264 (T) – 2.62921E-06 (RS) + 

0.000565 (RT) – 6.90090E-07 (ST) - 

0.000905 (R2) - 0.5.32887E-07 (S2) – 

0.001509  (T2) 

 

 

Fig. 10: RSM-BBD Predicted vs Actual and Normal plot of Residuals. 
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The plot of the predicted response against the internally studentized residuals in Fig. 10 

provides graphic confirmation of the continuous variance assumption. The internally 

studentized residual values were obtained by dividing the residual values by the appropriate 

standard deviation. The sample points were dispersed randomly between the negative 

6.25407 and positive 6.25407 outlier detection limits. Additionally, there were only slight 

differences between the actual and expected responses, indicating reasonable agreement 

between the predicted model and observed values. The described prediction model 

equations are thus considered adequate [29].   

3.5   Interaction of 2-D Contour Plots and 3-D Surface Plots 

Figure 11 depicts the cross-factor interaction effects between the independent 

predictors for eliminating dependent variables in photocatalytic seawater treatment using a 

combination using three-dimensional (3-D) surfaces and two-dimensional (2-D) contour 

plots. The maximum percentage elimination efficiencies as per RSM-BBD such as TOC = 

55.4%, COD = 73.4%, BOD = 23.7%, and BOD/COD = 0.054 with a maximum effect of 

combined photocatalyst as 4 g/L, reaction time = 180 minutes and pH = 9. 
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Fig. 11: 3D surface plots for all the responses. 

3.6   Numerical Optimization of Model 

The TiO2 and ZnO combined photocatalyst load was set to 1, 2.5 and 4 g/L, the reaction 

duration was set to 60, 180 and 300 minutes and pH was set to 6, 7.5 and 9. These parameters 

were used in the RSM-BBD Design Expert software numerical optimization to maximize 

pollutant abatement. In addition, the output variables were set to optimum with a 95% 

confidence level. The desirability function approach was used, and the optimum 

circumstances obtained are depicted in the ramp function [32]. It is a function that uses a 

mathematical transformation to convert a multiple-response problem to a single-response 

problem. Finally, these function programs look for the option with the highest overall 

desirability. According to Fig. 12, the ramp function graph shows the desirability function 

of 0.972, 1 out of 36 solutions which are close to 1. The selected maximum values for the 

output variables of TOC = 58.1%, COD = 72.6%, BOD = 23.3% and biodegradability = 

0.055, respectively, with an effect of combined catalyst as 4 g/L, pH = 8.266 and reaction 

time = 190.4 minutes. 

 
Fig. 12: RAMP function shows the desirability of the selected solution. 
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4.    MATLAB ANFIS Based Statistical Modelling and Analysis 

This section utilized the adaptive neuro-fuzzy inference system to optimize the 

responses. The first stage of this model is to initialize and optimize the (FIS) fuzzy inference 

system to represent the experimental data precisely, which can be accomplished by many 

procedures such as loading the experimental data sets, developing the FIS, training, and 

testing the (FIS) model. The ANFIS architectural network structure is depicted in Fig. 13.  

 

Fig. 13: Output network architecture for ANFIS model. 

This ANFIS training approach incorporates the gradient descent and least square method. 

In this method, around 25% of the dataset was designated for testing, while 75% was used 

for training [35]. High correlation coefficients were used in its development for training, 

testing, and validation. The ANFIS model was developed with a high degree of correlation 

coefficient (i.e., 0.990) for the training, testing, and validation between the values. Using 

various membership functions for various combinations of the variables, the higher the R2 

ANFIS model was filtered. The models' effectiveness was assessed for both training and 

testing. 

Table 9 displays the best clustering results, coefficient of determination (R2), and root 

mean square error (RMSE). Figure 14 represents the RMSE analysis of training, testing, and 

overall datasets. It can be observed that RMSE for TOC and BOD are significantly less in 

comparison to COD data. However, the TOC and BOD’s maximum value in the experiment 

set is 2.7 and 1.7. In contrast, COD ranges between 27 mg/L to 95 mg/L, and a deviation of 

1.82 is minimal in corresponds to large values of COD. Figure 15 shows a correlation 

between the predicted and actual value in terms of R2 value. Sample points closure to 

diagonal line gives a better R2 value [37]. The simulation suggests that a small number of 

clustering in ANFIS modeling compared to a large number of clustering gives a better R2 

value. 

Table 9: RMSE and R2 values for the responses  

Responses No. of 

clusters 

Training 

RMSE 

Testing RMSE All data RMSE R2 Analysis 

Train data Test 

data 

All data 

TOC 2 0.018 0.0374 0.023 0.998 0.999 0.998 

BOD 2 0.009 0.017 0.010 0.992 0.988 0.991 

COD 3 1.940 1.194 1.825 0.994 0.997 0.995 

27



IIUM Engineering Journal, Vol. 24, No. 2, 2023 Mohammed et al. 
https://doi.org/10.31436/iiumej.v24i2.2650 

 

 

 

 

Fig. 14: Model predictions on training-testing data and its RMSE analysis. 

The impact of Input parameters on a particular property can be analyzed by studying a 3D 

surface plot. Figure 16 shows the surface plots for three inputs, pH, dosage, and time. The 

experimental values or independent variables and the desired responses appeared to interact 

strongly, according to the surface plots [38]. Table 11 of the ANFIS statistical model shows 

that at a photocatalyst dose of 4 g/L, reaction time of 180 minutes and pH of 9, the maximum 

percentage elimination efficiency was found to be TOC=59.4%, COD=75.4%, 

BOD=24.2%, and biodegradability=0.055. Polynomial equation 16, using the mathematical 

formulation, is established to express the relationship between inputs and output [39]. Each 

polynomial equation correlates three inputs, i.e., dosage, time and pH, to one of the outputs, 

i.e., TOC, COD, BOD and BOD/COD. The polynomial equation is expressed below, where 

C is the coefficient, as listed in Table 10.  

 

Fig. 15: Regression value for output responses. 
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𝑂(𝐷, 𝑡, 𝑃) =  𝐶1𝐷3 + 𝐶2𝐷2𝑡 + 𝐶3𝐷2𝑃 + 𝐶4𝐷2 + 𝐶5𝐷𝑡2 + 𝐶6𝐷𝑡𝑃 +  𝐶7𝐷𝑡 + 𝐶8𝐷𝑃2 + 𝐶9𝐷𝑃 + 𝐶10𝐷 +

 𝐶11𝑡2 − 𝐶12𝑡2𝑃 + 𝐶13𝑡2 + 𝐶14𝑡𝑃2 +  𝐶15𝑡𝑃 + 𝐶16𝑡 + 𝐶17𝑃3 +  𝐶18𝑃2 + 𝐶19𝑃 +  𝐶20       (16) 

 

Fig. 16: 3D graph of regression for the responses. 

Table 10: Coefficient value of polynomial equation expressed in the equation 

Coefficient TOC COD BOD 

C1 -6.09154E+12 -3.54E+13 3.92837E+11 

C2 0.000398538 7.92E-04 -7.58767E-05 

C3 0.009997724 0.2850 0.001698481 

C4 4.56866E+13 2.655E+14 -2.94628E+12 

C5 9.31171E-06 0.000152428 5.78312E-08 

C6 6.09955E-05 0.000706241 6.00877E-06 

C7 -0.005512508 -0.038514773 0.000348171 

C8 0.006051481 0.131168367 0.001380013 

C9 -0.152814172 -3.4851686 -0.027966879 

C10 -1.0051E+14 -5.84101E+14 6.48181E+12 

C11 -682353.5565 -41651152.73 -1142667.33 

C12 2.01832E-06 6.21677E-05 8.01073E-07 

C13 368470920.5 22491622477 617040358.4 

C14 6.72591E-05 0.000527089 1.9375E-07 

C15 -0.001958112 -0.030065374 -0.000311682 

C16 -56498874475 -3.44872E+12 -94612854956 

C17 -3.65342E+11 9.39214E+11 68372164146 

C18 8.22019E+12 -2.11323E+13 -1.53837E+12 

C19 -6.08294E+13 1.56379E+14 1.1384E+13 

C20 2.1109E+14 1.08568E+14 -2.79169E+13 

5.   CONCLUSION 

The photocatalyst used in this study works well as a photocatalytic oxidizing agent for 

efficient seawater treatment. The experimental results showed that the optimum percentage 

elimination efficiency occurred at 4 g/L TiO2 and ZnO doses, 180 minutes of reaction time 
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and pH 9. In addition, the biodegradability was found to be 0.055. The most significant 

removal efficiencies in terms of percentage were determined to be TOC=59.8, COD=75.2, 

BOD=23.9%, and biodegradability=0.055, respectively. According to RSM-BBD, the 

highest possible removal efficiencies were reported to be 55.4, 73.4, and 23.7% for TOC, 

COD, BOD and biodegradability as 0.054. Based on optimization criteria, a total of 36 

solutions were discovered using RSM-BBD statistical modeling, and all of the response 

factors had a maximum desirability of 0.972 which is less than 1.0. The ANFIS was more 

precise with the prediction of TOC, COD, BOD, and biodegradability equal to 59.4, 75.4, 

24.1, and 0.055, correspondingly with a dosage of 4 g/L, 180 mins reaction time and pH 9. 

ANFIS was also superior to RSM-BBD modeling's predictions, with an average R2 value of 

0.999 vs. 0.977. This research also indicated that the ANFIS model could be a helpful tool 

and a reliable alternative to the RSM-BBD model. 
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Table 11.   Shows the experimental, RSM and ANFIS values 

  Input factors TOC elimination (%) COD elimination (%) BOD removal (%) BOD/COD 

Run R : Dos 

(mg/L) 

 S : 

RT 

(min)  

T : 

pH 

Expt 

val. 

BBD 

Pred. val. 

Anfis 

Pred. 

val. 

Expt 

val. 

BBD 

Pred. val. 

Anfis 

Pred 

val. 

Expt 

val. 

BBD 

Pred. val. 

Anfis 

Pred. val. 

Expt 

val. 

BBD 

Pred. val. 

Anfis 

Pred. val. 

1 2.5 180 7.5 38.000 40.330 39.580 62.000 62.330 62.310 21.000 21.330 21.300 0.040 0.042 0.039 

2 2.5 300 6 33.104 29.930 33.519 41.589 41.170 41.264 15.677 16.070 15.143 0.030 0.030 0.028 

3 1 180 9 20.692 23.070 22.900 39.223 40.240 37.962 20.771 20.430 20.520 0.021 0.021 0.020 

4 1 60 7.5 4.472 4.300 4.519 17.159 15.720 18.929 7.636 8.380 7.917 0.018 0.016 0.018 

5 2.5 60 6 8.178 9.330 7.900 40.523 40.190 36.404 10.589 9.570 8.345 0.029 0.029 0.025 

6 1 300 7.5 25.938 24.720 24.348 25.232 23.880 25.428 16.583 15.900 15.562 0.018 0.018 0.018 

7 2.5 300 9 35.986 34.830 38.310 44.377 44.710 43.840 18.642 19.660 18.610 0.032 0.032 0.023 

8 2.5 60 9 11.673 12.850 12.240 45.468 45.890 41.253 13.534 13.140 11.869 0.031 0.032 0.024 

9 4 180 9 59.796 55.400 59.386 75.200 73.430 75.392 23.944 23.660 24.138 0.055 0.054 0.055 

10 2.5 180 7.5 42.000 40.330 35.580 62.000 62.330 60.496 21.000 21.330 20.864 0.040 0.042 0.032 

11 4 180 6 52.539 50.160 53.740 70.646 69.630 70.672 20.275 20.620 18.948 0.049 0.049 0.044 

12 4 60 7.5 35.501 36.720 35.454 56.641 57.990 58.731 12.475 13.150 12.297 0.047 0.047 0.034 

13 1 180 6 13.504 17.900 15.005 33.015 34.790 33.271 16.031 16.310 15.390 0.020 0.021 0.020 

14 4 300 7.5 45.959 51.510 45.282 48.205 49.640 47.776 19.405 18.660 18.191 0.045 0.047 0.025 

15 2.5 180 7.5 41.000 40.330 38.580 63.000 62.330 61.900 22.000 21.330 20.864 0.045 0.042 0.032 
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