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ABSTRACT:  Block methods have been adopted in studies for solving first and higher order 

differential equations due to its impressive accuracy property. Taking a step further to 

improve this accuracy, researchers have considered the inclusion of higher-derivative terms 

in the block method, although this has been limited to the presence of one higher-derivative 

term in previous studies. Hence, this article aims at better accuracy by introducing two 

higher-derivative terms in the block method. In addition, this article presents a scheme with 

generalised step length such that there is flexibility on the choice of step length when 

developing the block method. The generalised step length scheme is adopted to develop a 

three-step block method for solving first-order fuzzy initial value problems. Its properties to 

ensure convergence and to show the region of absolute stability is investigated, and 

problems relating to charging and discharging of capacitor are considered. The absolute 

error shows the impressive accuracy of the three-step block method including obtaining the 

same values as the exact solution. Therefore, in addition to the new generalised algorithm 

presented in this article, a new three-step method for solving linear and nonlinear first order 

fuzzy initial value problems is presented. 

ABSTRAK: Kaedah blok digunakan dalam banyak kajian untuk menyelesaikan persamaan 

pembezaan peringkat pertama dan peringkat tinggi kerana sifat ketepatannya yang baik. 

Bagi meningkatkan ketepatan ini, penyelidik telah mengambil kira dengan memasukkan 

terbitan peringkat tinggi dalam kaedah blok, walaupun ini terhad pada satu sebutan terbitan 

peringkat tinggi dalam kajian sebelum. Oleh itu, kajian ini bertujuan bagi mendapatkan 

ketepatan yang lebih baik dengan memperkenalkan dua sebutan terbitan peringkat tinggi 

dalam kaedah blok. Tambahan, kajian ini memperkenalkan skema dengan panjang-langkah 

kaki biasa supaya terdapat kebolehlenturan pada pilihan langkah semasa membangunkan 

kaedah blok. Skema ini diadaptasi bagi membangunkan kaedah blok tiga-langkah bagi 

menyelesai masalah nilai awal peringkat pertama secara rawak. Ciri-ciri terperinci dikaji 

bagi memastikan penumpuan lingkungan kestabilan mutlak, dan masalah berkaitan 

pengecasan dan nyahcas kapasitor juga turut diambil kira. Ralat mutlak menunjukkan 

ketepatan yang mengkagumkan pada kaedah blok tiga-langkah termasuk mendapatkan nilai 

yang sama seperti penyelesaian. Oleh itu, tambahan pada algoritma ini, kaedah tiga-langkah 

bagi menyelesaikan linear dan tidak linear pada masalah nilai awal peringat pertama secara 

rawak diperkenalkan. 

KEYWORDS:  fuzzy initial value problem; generalised steplength; block method; higher  

derivative; charging and discharging of capacitor 
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1. INTRODUCTION 

The primary focus of numerical methods for solving fuzzy differential equations has 

been on presenting numerical methods with a higher level of accuracy. This includes 

providing a more accurate numerical solution for first order fuzzy initial value problems 

(FIVPs) of the form 

0 0 0'( ) ( , ( )), ( ) , [ , ]y x f x y x y x y x x X= =  .          (1) 

Numerous researchers have developed different numerical methods [1-6] to solve 

problems in the form of Equation (1), however, the major problem encountered is that these 

existing numerical methods give a low level of accuracy in terms of absolute error due to 

order of the method used. Specifically, researchers considered the use of linear multistep 

methods implemented in predictor-corrector mode (a non-self-starting approach with low 

accuracy) as seen in studies [7,8]. To improve the accuracy, block methods were introduced 

in [9-11] and better accuracy was observed than linear multistep methods. However, there is 

still a need for an improvement in the solution accuracy in terms of absolute error. Hence, the 

motivation to develop block methods in this article with the presence of two higher derivative 

terms with the aim of obtaining better accuracy. In comparison to existing methods, the 

proposed method has the advantage of better accuracy, being self-starting, and flexibility in 

development and implementation of the block method. 

2. PRELIMINARIES 

This section recalls some basic definitions which will be adopted in this article. 

Triangular Fuzzy Number [12]. Consider that ( ) 3, , ,  u v w u v w   . Then the 

triangular fuzzy number, ( )M x  is given as 
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The corresponding r-level set of the triangular fuzzy number is denoted as 

( ) , ( ) ,  [0,1]
r

M u r v u w r w v r= + − − −  .          (3) 

Trapezoidal Fuzzy Numbers [12]. Consider that ( ) 4, , , ,  u v w u v w     . Then 

the trapezoidal fuzzy number ( )M x  is given as 
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The corresponding r-level set of the trapezoidal fuzzy number is denoted as 

( ) , ( ) ,  [0,1]
r

M u r v u r w r = + − − −   (5) 

Some of the basic fuzzy definitions and notions that are not included in this Section 2 are 

widely known. Notions of fuzzy sets, functions and their operations, fuzzy derivatives, and 

Zadeh’s extension theory can be retrieved from literature such as [13-16]. 

3. METHODOLOGY 

Given that the first-order FIVP of the form defined in Eq. (1) be a mapping, 

: f ff →  and 0 f
y  , with r-level set ( )0

(0, ), (0, ) ,  [0,1]
r

r
y y r y r r  . Also, denote the 

approximation solution as ( ) ( )y(x , ) (x , r), (x , r)
rr

n n nr r
y y =  at points 0nx x nh= + , where 

0 n N   and 0X x
h

n

−
= .  

The generalized k-step block method with presence of second and third derivative in 

first-order form is stated below as, 

( )
2

( )

0 0

, 1,2,3,...,

r
k

r
d

n n dv n vr
d v r

y y f k  + +

= =
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= + =  

  
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Expanding Eq. (6) gives the expression 
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Consider the Taylor series expansions defined by [17]: 
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Applying these expansions in Eqs. (8) and (9) to expand each term in Eq. (7) results in 

obtaining the unknown coefficients dv  from 
1

dv A B −= , where 
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The resultant values are substituted in Eq. (7) to get the desired generalized k-step block 

method with the presence of second and third derivatives for solving first-order FIVPs. A 

more detailed explanation is given in the following subsection, where the generalised step 

length (k-step) block method scheme with presence of second and third derivatives is adopted 

to develop a three-step ( 3k = ) block method for first order FIVPs. 

3.1  Development of Three-Step Block Method 

To develop a three-step block method with second and third derivatives for first order 

FODEs requires substituting 3k =  in Eq. (7) and then applying Taylor series expansions in 

Eqs. (8), (9). The unknown coefficients dv   are obtained as follows: 
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Substituting the obtained coefficients in Eq. (7) for 3k = , the three-step block scheme is 

derived as 
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The block method in Eq. (10) has corrector form  
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4. CONVERGENCE PROPERTIES 

This section will detail the convergence properties of the developed three-step second-

third derivative scheme. The following definitions are used: consistency, zero-stability, and 

region of absolute stability from [18]. These definitions for block methods in crisp form are 

adopted to the proposed method for fuzzy initial value problems to prove the convergence 

properties for the proposed method.  

4.1  Order and Error Constant 

The linear operator which is associated with Equation (6) for the three-step block 

method is defined as:  

2 3
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The order of this method is z  if 0 1 2 ,...., 0z= = = = =  and 1z+  is the error 

constant. By using the definition of order and error constant, the developed block method has 

order 12z =  with error constant 29609 23 9
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method is consistent. 

4.2   Zero-stability 

The zero-stability of the proposed method is computed from 
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. 

The obtained roots satisfy the condition in [18]. Hence, the proposed three-step block 

method is zero-stable. Since the proposed method satisfies the properties of consistency and 

zero-stability for block methods, this implies that the method is convergent. 

4.3  Region of Absolute Stability 

The characteristic polynomial used to obtain the region of absolute stability of the 

developed block method is obtained as 

1 2 3 4

0 0 0 0

det ( ) ,

                                                                                           

r
k k k k

k j k j j k j j k j j k j

j j j j
r

w A q B w q C w q D w q E w− − − −

= = = =

         
− + + + + +                    

   

                                    .q h=
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( )

9 8 7 6 5 3 2

9 8 7 6 5

52183 388873 231359 1549771 10104397 4 5805453 47 3 6

369600 910694400 546416649 40981248 45534720 68302080 12142592 44 2

157 109 179 589 4 21

369600 16800 221760 19008 5280 3960

1
q q q q q q q q q

q q q q q q

w
R w

 − + − + − + − − −
 

==
+ + + + + +

3 247 3 3

44 44 2
1

q q q
w

 
 
 
  + + + 
  

. 

The region of absolute stability is determined by plotting the roots of the polynomial 

using a boundary locus approach, as shown in Fig. 1. 

 

Fig. 1: Absolute stability region of three-step second-third derivative block method. 

5. RESULTS AND DISCUSSION 

This section details using the three-step block method to solve first-order linear and 

nonlinear FIVPs numerically and comparing the results to the exact solution. Tables and 

graphs are being used to compare exact and approximate solutions. The following notations 

are utilised in this section. 

x-axis shows the value of approximation solution 

y-axis shows the value of r-level set 

,Y Y  are the exact solution of lower and upper bound respectively 

,y y  are the approximation solution of lower and upper bound respectively 

Y y−  absolute error of lower bound approximation  

Y y−  absolute error of upper bound approximation  

h is the stepsize  

Example 1 [19].  

Consider the following crisp capacitor model 

( ( )) 1 1
( ) ( )c

c G

d U x
U x U x

dx RC RC
= − +         (14) 

with exact solution 
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( )
( ) . ( . ) .

dx dx dx

GRC RC RC
c

U x
U x K e e dx e

RC

− − −   
= +  

 
 .         (15) 

For the initial condition charging of the capacitor 

( ) .[1 ]
x

RC

C BU x U e= − ,            (16) 

while for the initial condition discharging of the capacitor 

,0( ) .
x

RC

C cU x U e= .                  (17) 

According to [4], the crisp equation can be modelled in a fuzzy form using the definition 

of fuzzy theory, which is given in Section 2. The uncertain behaviour of a capacitor using the 

voltage, capacitance, or resistance of the circuit current is defined as triangular fuzzy 

numbers. 

5.1  Charging of a Capacitor 

The exact and approximate solutions are presented at 4x s= . Table 1 presents the 

accuracy for the lower and upper solutions of charging capacitor under DC condition with 

triangular fuzzy number. The corresponding graphs are shown in Fig. 2. The specifications 

adopted are battery voltage 12V= , 0.25C F= (farads), (0) 0cU = , and resistance with 

triangular fuzzy number is (2 , 4 )R r r= + − . 

5.2  Discharging of a Capacitor 

The exact and approximate solutions are presented at 4x s= . Table 2 presents the 

accuracy for the lower and upper solutions of the discharging capacitor under DC condition 

with triangular fuzzy number. The corresponding graphs are shown in Fig. 3. The 

specifications adopted as same as the charging of a capacitor scenario. 

Table 1: Lower and Upper Solutions for Charging of Capacitor Problem in Example 1 

r y   Y y−  y   Y y−  

0 

0.2 

0.4 

0.6 

0.8 

1 

11.995974448465169 

11.991669406884018 

11.984728394383922 

11.974496498029186 

11.960417930928731 

11.942064600074023 

0.0e+00 

0.0e+00 

0.0e+00 

0.0e+00 

0.0e+00 

0.0e+00 

11.780212333335189 

11.821937321808754 

11.859076458515744 

11.905917027388661 

11.931188450176629 

11.942064600074023 

0.0e+00 

0.0e+00 

0.0e+00 

0.0e+00 

0.0e+00 

0.0e+00 

Table 2: Lower and Upper Solutions for Discharging of Capacitor Problem in Example 1 

r y   Y y−  y   Y y−  

0 

0.2 

0.4 

0.6 

0.8 

1 

0.00402555153483014 

0.00833059311598270 

0.01527160561607770 

0.02550350197081452 

0.03958206907126909 

0.05793539992597728 

4.336e-18 

7.806e-18 

8.673e-18 

1.737e-18 

1.008e-17 

1.048e-17 

0.21978766666481017 

0.17806267819124583 

0.14092354148425637 

0.10850319025595753 

0.08085536398902561 

0.05793539992597728 

8.3266e-17 

8.3266e-17 

1.9428e-16 

2.2204e-16 

8.3266e-17 

1.5265e-16 
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        Fig. 2: Example 1 at h=0.1, [0,4], [0,1]x r     

 
        Fig. 3: Example 1 at h=0.1, [0,4], [0,1]x r   

In subsequent examples (Examples 2 and 3), since the exact solution cannot be obtained 

analytically, the proposed method in this study is used to obtain the approximate solution. It 

is seen that the approximate solution shows a non-monotone behaviour as time increases. The 

approximate solution in Tables 3 and 4 shows the lower and upper solutions using triangular 

fuzzy numbers. 

Example 2. [20].  

Consider the following nonlinear FIVP 

2 2
'( ) cos( ), (0, ) ( , )y x xy y r r r = = − . 

Table 3: Lower and Upper Solution for Example 2 

r y   y   

0 

0.2 

0.4 

0.6 

0.8 

1 

0.61513329423446 

0.62072922853453 

0.62648141558304 

0.63281743366655 

0.64032241288569 

0.6500044930335 

2.81437834172917 

1.31086566147775 

0.74700523547913 

0.68810151091971 

0.66399579330793 

0.65000449303352 
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Example 3. [21].  

Consider the following nonlinear FIVP 

2 2
'( ) , (0, ) (0.1 0.1,0.1 0.1 )y x x y y r r r= + = − − . 

Table 4: Lower and Upper Solution for Example 3 

 r y   y   

0 

0.2 

0.4 

0.6 

0.8 

1 

0.24913567333881 

0.26259107127145 

0.28321967366284 

0.30466869011884 

0.32698805629646 

0.35023184431536 

0.48255938900528 

0.45370358499704 

0.42612209786584 

0.39973233756115 

0.37445870012445 

0.35023184431536 

In Example 1, a crisp capacitor model was successfully solved using the proposed 

method with a fuzzy initial value, and the results were compared to the exact solution. The 

results are seen in Table 1 and 2 with charging and discharging of the capacitor. These tables, 

showing the comparison between exact and approximate solution, indicate that the accuracy 

of the solution in terms of absolute error is quite impressive. The nonlinear Examples 2 and 3, 

which cannot be solved exactly, are solved numerically by the proposed method. The 

obtained results are demonstrated in Tables 3 and 4. Although, Example 3 was solved by [21] 

with homotopy perturbation method, where the authors solved crisp Riccati equation with 

two defuzzification for FIVPs, their obtained results lie in the short time interval [0,0.5] 

which indicate that their proposed method is limited to the specific points with large amounts 

of mathematical complexity. 

6. CONCLUSION 

The major objective of this research is to enhance the solution accuracy in terms of 

absolute error for first order FIVPs. As a result, this article developed a generalised step 

length block method for first order fuzzy ordinary differential equations with the presence of 

second and third derivatives. Because the algorithm can simultaneously construct block 

methods of step length k for solving first order FIVPs, the generalised technique is considered 

as extremely flexible. The sample block method with second and third derivatives scheme has 

proven to be a viable strategy with increased accuracy for solving both linear and nonlinear 

FIVPs. The method was developed using a linear block approach with low computational 

complexity, while also satisfying all convergence conditions for the block methods. The 

solution of the FIVPS as seen in the tables and graphs demonstrates the applicability of the 

three-step implicit block method for first order FIVPs. So, this generalised approach is 

suitable for developing block methods for first order FIVPs. 
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