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ABSTRACT: Just as the method for determining the properties of shapes like  triangles, 
parallelogram, cuboids, and geometric figures like circle, and spheres have standard 
formulae, the determination of a function F(x) in many dimensions have formulae or 
standard methods. Complex 2D and 3D figures consisting of intricate merger of regular 
shapes have had their parameters determined through careful separation and 
determination of the properties of individual components that make up the figure.  
Moreover, the case of irregular closed shapes mostly but not limited to 2D and 3D which 
abound in science and engineering have equally received attention resulting in lots of 
approximation methods evolved over time. The iterative spatial sectoring is a novel way 
of determining the area of 2D irregular closed shapes by expanding on the famous 
Simpson’s method for finding the area of a function F(x) whose definite integral is either 
tedious or impossible by standard approaches.  
ABSTRAK: Seperti beberapa kaedah yang ada yang sering kali digunakan untuk 
menentukan sifat-sifat bentuk seperti segi tiga, segi empat selari, kuboid, dan rajah 
geometrik seperti bulatan, dan sfera; semuanya mempunyai formula-formula yang 
standard, penentuan fungsi F(x). Bentuk kompleks dua dimensi, 2D dan tiga dimensi, 3D 
terdiri daripada penyatuan rumit bentuk-bentuk yang biasa dimana parameternya 
ditentukan melalui pengasingan yang cermat dan penentuan ciri-ciri komponen individu 
yang akhirnya membentukkannya. Walaupun begitu, dalam hal bentuk tertutup yang tak 
nalar, ia bukan hanya terhad kepada bentuk 2D dan 3D yang banyak terdapat dalam 
bidang sains dan kejuruteraan.  Ia mendapat perhatian meluas dimana pelbagai kaedah 
penghampiran dihasilkan.  Pensektoran ruang berlelar merupakan cara baru yang 
digunakan untuk menentukan keluasan bentuk  2D tak nalar yang bertutup  dengan 
mengembangkan kaedah Simpson’s untuk mendapatkan keluasan dengan fungsi F(x) 
dimana kamirannya sama ada terlalu rumit ataupun di anggap mustahil mengikut cara 
biasa. 

KEYWORDS: function F(x); irregular shape; Simpson’s method; definite integral; 
iterative spatial sectoring 

1. INTRODUCTION  
Irregular 2D and 3D figures consisting of intricate merger of regular shapes have had 

their parameters determined through careful separation and determination of the properties 
of individual components that make up the figure [1-3]. Moreover, the case of irregular 
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closed shapes mostly but not limited to 2D and 3D which abound in science and 
engineering like that of Fig. 1 have equally received attention resulting in lots of 
approximation methods evolved over time. Such methods include the graphical methods 
of calculating the area of irregular shaped lands usually employed by Surveyors, Civil and 
Agricultural Engineers, and also used in biometric measurements [4].  Furthermore, the 
advent of computer programming brought the emergence of computer-based 
approximation methods like fractal analysis [5], Monte Carlo method, pixel-filling, 
wavelet, and so on. Just as the method for determining the properties of shapes like  
triangles, parallelogram, cuboids, and geometric figures like circle, and spheres have 
standard formulae, the determination of a function F(x) in many dimensions have formulae 
or standard methods. One of such is the series expansion for function F(x) which does not 
fit into direct integration as in eqn. 1 or use of Simpson’s Rule where the use of series 
expansion becomes tedious, the like of which is in eqn. 2. Again, we see that for finding 
areas under a curve which has a non-existence function/ impossible function/ difficult-to-
get function like the one in Fig. 2, the method of finding area bounded by a curve in 
integral calculus application could be use with minimal error [6-9]. 

 
 

 
 

 
 

 
 

 
Fig. 1: An example of irregular shape. 
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Fig. 2: Undefined function. 
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The iterative partial sectoring (IPS) is an idea conceived to evolve yet another 
approximate method of finding the area of irregular closed shapes of the type in Fig. 1 
neither from the computer programming perspective nor by integrating an approximate 
function that describes the curve, but from the classical mathematics standpoint. Hence, 
the IPS methodology follows from approximate integral and integral application methods 
of solving area bounded by functions difficult to express mathematically or shapes whose 
function is either non-existent. We therefore reasoned that since the areas those complex 
curves could be evaluated using those approaches, the area of irregular closed shape could 
also be found by careful extension of those methods especially  Simpson’s rule. 

2. UNDERSTANDING THE SIMPSON’S RULE OF APPROXIMATE 
INTEGRATION 
Suppose we have a curve of the type in Fig. 2, and assuming that its function F(x) is 

either non-existent or not solvable by any know integral approach, or tedious to expand by 
power series approach, the next logical approach in classical mathematics is the Simpson’s 
rule. The rule says divide the area of interest into even number of spaces with equal 
spacing, that gives odd number of dividing lines and apply eqn. 3 to get an approximate 
area bounded by the curve. More so, the approximate area could be closer to reality by 
further division of the region of interest into smaller areas as usually done in integral 
application. 

 

 
  

 
 

 
 

 
Fig. 3: Applying Simpson’s Rule. 
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Fig. 4: Analyzing Simpson’s Rule. 
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The Simpson’s rule conceived by finding the area of the rectangle ABCD bounded by 
two parallel but unequal length stripes AD and BC as shown in Fig. 4. Since the two 
parallel sides of a rectangle must be equal, thus find the area of ABCD using the formula 
for rectangle will only give an approximate value whose error may be unacceptable. 
Hence, the Simpson’s formula of eqn. 3 is in effect finding the area of ABCD twice such 
that each time one of the parallel sides (length) is used and the average of the two give a 
better approximation. 

That is: 

ܽ݁ݎܣ ≈
ݏ)] ∗ (ܦܣ + ݏ) ∗ [(ܥܤ

2     … (4) 

or ܽ݁ݎܣ ≈ ݏ ቀା
ଶ

ቁ  … (5) 

 
 

 
 

 
 

 
Fig. 5: Analyzing Figure Based on Integral Application. 

When eqn. 5 is applied to all divisions under the curve it could be summed up as eqn. 
3, and that greatly reduces the initial error margin as represented by AefB  when length 
AD is used to something around half of that. Furthermore, if we combine this with the idea 
of making s more and more smaller, when ݏߜ approaches zero as depicted in Fig. 6, the 
error in our approximation also approaches zero. Hence the area gotten at that stage 
becomes less of approximation but actual value. Hence, the combination of the two 
methods to evolve a better result could named  “Iterative Simpson’s Method”. 

 

Fig. 6: Error Reduction Approach. 

When the problem is extended to irregular closed shape instead of just a curve, we 
foresee that the combination of these two concepts (“Iterative Simpson’s Method”) and 
their reformulation in geometric terms will offer an intriguing result. 
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3.   PROOF OF CONCEPT l 
Given that a function f(x) is A sin x  represented diagrammatically in Fig. 7 and 

inserted into a Cartesian plane shown in Fig. 8a and 8b, the area under this shape is found 
by integrating the function and inserting the limits. 

 

  
 

Fig. 7: A sine function. 
 

 

 

 
 

 
 

 
 

Fig. 8a: Sine wave in Cartesian plane on the x-axis. 
 

 
 

 
 

 
 

 
 

Fig. 8b: Sine wave in Cartesian plane Elevated. 

The solution to Fig. 8a is the integration of f(x) and substituting the limit marked on 
the x-axis with A being the amplitude or magnitude of the wave on the y-axis, while the 
solution to Fig. 8b is the same as that of Fig. 8a but with the addition of area of the 
rectangle under the curve. That is,  

࢟ = නܣ ݔ݊݅ݏ
ସ

ଵ
ݔ݀ = – ସ[ݔݏܿ] )ܣ ( ଵ[ݔݏܿ] + …ܥ (6) 

ݕ = නܣ ݔ݊݅ݏ
ସ

ଵ
ݔ݀ = – ସ[ݔݏܿ] )ܣ ( ଵ[ݔݏܿ] + 4)ܤ − 1) + …  ܥ (7) 
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where A is the amplitude of the sine wave, B is the upward projection of the sine wave in 
Fig. 4b, and C is the constant of integration. 

A good approximation of this result could be obtained by determining the area under 
the sine wave by combining the method of approximate integral and integral application. 
This is done by dividing the space under consideration into equally spaced subdivisions, 
and then, find the sum of the area of each of the subdivisions. That is the area of (A + B + 
C + D + E + F + G + H + I). Given that each of the area of A to I as ܣ  where ݅ is from 1 to 
9 representing each of the subdivision, thence, y could be expressed as: 

ݕ ≈ܣ
ଽ

ୀଵ

… (8) 

This approximate solution could be improved upon by further reduction in the width  
(interspaces) between the red stripes as in figure 9thereby reducing the size of the 
rectangles formed. Conversely, more accurate result could also be achieved by calculating 
the area of each rectangle twice using one the two lengths (vertical stripes) at a time and 
then find the average of the two areas. This is exactly what Simpson [6-9] formularized as: 

ܽ݁ݎܣ ≈ ௦
ଷ
ܨ)] + (ܮ + ܧ4 + 2ܴ] … (9) 

Both approaches would be exploited as this work progresses. 

 
Fig. 9: A section of the sine wave divided into smaller rectangles. 

 
4.   PROOF OF CONCEPT ll 

Furthermore, if the sine wave is made into a circle as in Fig. 6a, the area bounded by 
the sine wave circle is the area of the inner grooves of the sine wave plus the area of the 
small circle enclosed by it. That is: 

ݕ = Acos ݔ + ܤ + ܥ … (10) 

where A remains the magnitude of the sine wave, B is the area of the inner circle, and C is 
integration constant. 
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Fig. 10a: Sine wave made into circle (neatly wobbled irregular shape). 

 

 
Fig. 10b: Figure 10a separated into Sine wave and inner circle. 

An approximate result could be obtained by dividing Fig. 10b into smaller sectors and 
summing up the area of each of the smaller sectors. Similar to what is done in integral 
applications, the error can be reduced to the barest minimum by making the sector further 
smaller. However, in taking this approach two questions need be answered that is, what is 
the angle of the intended sectors?, and what criterion would be used to obtain the 
reduction of the sectors into smaller ones?. The answer to these questions provides the 
basis for a quicker convergence of the solution to the problem, and more importantly adds 
value to this method above its predecessors – The Simpson’s rule and the method of 
reducing the rectangle in integral application. 

It is observed that we can be close to the precise angle of the sector that will result in 
close approximation of the area bounded by the sine wave if we can determine the angular 
squeezeness of the wave. For instance, if we know how close the waves are to each other 
relative to the biggest expanse the wave as a whole, we could have determined its 
squeezeness and use the relationship to determine the sector angle, such that the ratio of 
the average area (determined by a circle drawn around the middle of the vertical 
compression of the wave such as circle B in Fig. 10b) to that of the maximum expanse of 
the sine wave. In the absence of that we take ratio of circle A the maximum expanse of the 
sine wave to that of circle C the minimum space left inside it as it squeezes.  
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Formula for Determining Sector Angle 
Based on the explanation above, we can determine sector angle by multiplying the 

ratio of A to C by 3600, then subtract 3600 from the product, and divide the magnitude by 
10. Round the answer to the nearest 100 for easy division. This is mathematically stated as: 

݈݁݃݊ܣ ݎݐܿ݁ܵ =
ቚቂܥܣ (360°) − 360°ቃቚ

10 … (11) 

This will give sector angle relative to the squeezeness of the irregular shape, thus 
bringing the first sequence to be close enough to final solution such that with few 
iterations the solution will converge. 

5.   STEPS TO SOLVING REAL PROBLEM 
(a) Construct a circle of known radius round the shape similar to A in Fig. 10b as shown 

in Fig. 11 
(b) Construct another circle within the shape similar to C in Fig. 10b as shown in Fig. 12 
(c) Find the ratio of A to C 
(d) Do as in eqn. 11 
(e) Draw the sectors as in Fig. 13 
(f) Mark the points of intersection of the radii with the irregular shape and measure its 

length 
(g) Determine the area of each sector using eqn. 12 
(h) Calculate the approximate area of the irregular shape using eqn. 13 
(i) Reduce the size of the sectors (by halving ߠ if possible), and recalculate area of 

irregular shape using eqn. 14 
(j) Look for convergence of step (h) and (i) by finding the difference between ൫்ܴೣ ൯ and 

൫்ܴೣ శభ൯ the modulus of the difference returns zero or something very close to zero. 

 
 

 
 

 
  

Fig. 11: Irregular Shape Encircled by its Approximate Largest Expanse. 
 
 
 
 
 
 
 

Fig. 12: The Smallest Possible Circle Inserted into the Irregular Shape. 
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Fig. 13: Irregular Shape Divided into Sectors. 

(ܣ) ݎݐܿ݁ݏ ܽ ݂ ܽ݁ݎܣ =
ߠ

ݎߨ  360 . ାଵݎ … (12) 

 

where ߠ is the angle derived from equation 11, and ݎ ,  ାଵ represents the two radii ofݎ
each sectors. 

(ܴ) ݁ℎܽݏ ݁ݏ݈ܿ ݎ݈ܽݑ݃݁ݎݎ݅ ℎ݁ݐ ݂ ܽ݁ݎܣ = ൫்ܴೣ ൯

= ܴ =   ൬
௫ߠߨ
360൰

. ାଵݎݎ +  ൬
௫ߠߨ
360൰ௐభ

. ݎௐభݎ

(ௐభିଵ)

ୀଵ

… (13) 

(ܴ) ݁ℎܽݏ ݁ݏ݈ܿ ݎ݈ܽݑ݃݁ݎݎ݅ ℎ݁ݐ ݂ ܽ݁ݎܣ = ൫்ܴೣ శభ൯ 
= ∑ܴ =  ∑ ቀగఏೣశభ

ଷ
ቁ


. ାଵݎݎ + ቀగఏೣశభ
ଷ

ቁ
ௐభ

. ݎௐభݎ … (14)(ௐభିଵ)
ୀଵ  

6.   CONCLUSION 
A stepwise description of a iterative spatial sectoring is presented, it is a novel 

method for finding area of irregular closed spaces. The technique is based on idealistic 
understanding of methods of finding area under curves particularly the Simpson’s rule 
combined with geometric way of finding area of a sector. The method is not computer 
based hence there is no need to compare it with computer based methods like Fractal 
Analysis, Pixel filling, Monte Carlos and Wavelet techniques. It also has the ability to 
accept error margin by setting |RTx – RTx+1| >= 0, instead of |RTx – RTx+1| = 0. Finally there 
are on-going efforts to develop the software for implementing this method and advance it 
to a computer based technique.  
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