
IIUM Engineering Journal, Vol. 24, No. 2, 2023 Abdul Jalil et al. 
https://doi.org/10.31436/iiumej.v24i2.2296 

HIGH ACCURACY HUMAN MOTION TRAJECTORY 

GENERATION FOR EXOSKELETON ROBOT USING 

CURVE FITTING TECHNIQUE 

MUHAMMAD ABDUL JALIL1*, MUHAMMAD FAHMI MISKON2
,

BAZLI BIN BAHAR2  

1Mechanical Engineering Department, Polytechnic Port Dickson, Port Dickson, Malaysia 
2Center of Excellence in Robotic and Industrial Automation (CeRIA), 

Faculty of Electrical Engineering, Universiti Teknikal Malaysia, Melaka, Malaysia 

*Corresponding author: muhammadaj@polipd.edu.my

(Received: 24 January 2022; Accepted: 22 May 2023; Published on-line: 4 July 2023) 

ABSTRACT: Robotic systems often require trajectory planning algorithms that can 

generate natural human-like movements for tasks such as grasping and manipulation. 

However, conventional trajectory planning methods may not accurately capture the 

complex movement patterns observed in humans. In this paper, we present a trajectory 

planning algorithm based on polynomial curve fitting that aims to address this issue. The 

algorithm determines the polynomial coefficient values that accurately match the natural 

human trajectory profile and is evaluated using MATLAB simulations. We compare the 

proposed algorithm to the conventional quintic polynomial trajectory method, analysing 

the accuracy, precision, and via-point continuity. The result shows that the algorithm has 

the ability to generate a trajectory profile with accuracy of 99.8% and a precision of 0.002°. 

However, the result for via-point continuity shows an error on every sub-phase transition, 

with the lowest error of 0.0031 between the transition of sub-phases 1 and 2. The result 

also shows that the lowest fitting error recorded is 0.00014°. The results demonstrate that 

our algorithm can generate trajectory profiles with higher accuracy and naturalness, 

potentially improving the performance and usability of robotic systems. 

ABSTRAK: Sistem robotik sering memerlukan algoritma perancangan trajektori yang 

dapat menghasilkan gerakan semulajadi seperti manusia bagi tugas seperti memegang dan 

memanipulasi objek. Walau bagaimanapun, kaedah perancangan trajektori konvensional 

mungkin tidak dapat merekodkan pola gerakan kompleks seperti yang dihasilkan manusia 

secara tepat. Kajian ini adalah berkenaan algoritma perancangan lintasan berdasarkan 

penyepaduan lengkung polinomial bagi menyelesaikan masalah ini. Algoritma ini 

menentukan nilai pekali polinomial yang sepadan dengan profil gerakan semulajadi 

manusia dan dinilai menggunakan simulasi MATLAB. Algoritma yang dicadangkan ini 

telah dibandingkan dengan kaedah perancangan lintasan polinomial kuintik konvensional, 

dianalisis kejituan, ketepatan, dan keberterusan titik lalu. Keputusan menunjukkan bahawa 

algoritma tersebut mampu menghasilkan profil lintasan dengan kejituan sebanyak 99.8% 

dan ketepatan sebanyak 0.002°. Walau bagaimanapun, dapatan kajian mengenai 

keberterusan titik lalu menunjukkan ralat pada setiap peralihan fasa-sub dengan ralat 

terendah sebanyak 0.0031 pada peralihan antara fasa-sub 1 dan fasa-sub 2. Dapatan kajian 

juga menunjukkan bahawa ralat penyepaduan terendah yang direkodkan adalah sebanyak 

0.00014°. Keputusan ini menunjukkan bahawa algoritma ini mampu menghasilkan profil 

lintasan dengan ketepatan dan sifat semula jadi yang lebih tinggi, berpotensi meningkatkan 

prestasi dan kegunaan sistem robotik. 
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1. INTRODUCTION 

Trajectory refers to a time history of the position, velocity, and acceleration for each 

degree of freedom (DOF) [1]. In trajectory generation, the desired trajectory for motions is 

generated based on the prediction of how the system (robot) responds to the input trajectory. 

Generally, trajectory generation deals with the problem of 1) how to specify a trajectory 

with a simple description, 2) how the trajectory is represented, 3) how to generate the 

trajectory in real-time [1], and 4) how to find a relationship between two domains: time and 

space [2]. 

According to Miskon et al. [3], there are three strategies for generating a trajectory for 

robot applications: off-line, on-line, and combined or hybrid. The off-line strategy is a 

strategy that uses either a mathematical model such as a polynomial equation [4], Fourier 

Transform [5], Central Pattern Generation (CPG) [6], Neural Oscillator [7], or uses recorded 

or normalized human motion data [8]. The advantage of this strategy is that it does not 

require any dynamic relationship between the robot and the environment. However, the 

main drawback of this strategy is adaptation due to environmental uncertainties. Also, some 

of the off-line methods required very accurate robot modelling before the trajectory was 

planned. 

On the other hand, the on-line strategy does not need a predefined trajectory to generate 

the motion. It has the capability to produce the trajectory according to the working space 

environment. The implementation of Neural Network [9] and Fuzzy Logic [10] attached 

with an additional sensor [11,12] is used to improve the accuracy of the generating 

trajectory. However, this strategy must consider issues such as the fastest time adapting for 

real-time application and accuracy. Meanwhile, the hybrid strategy used both advantages of 

off-line and on-line strategy to generate a trajectory for the robot. 

The normative human trajectory has been studied to ensure that the robot (in this case, 

bipedal or exoskeleton) can follow the nature of human motion. Two types of trajectory 

approaches can generate trajectory profiles using the cartesian and joint space approaches. 

The cartesian space trajectory generation approach will involve inverse kinematics. There 

will be multiple solution problems in which matching with human motion will be an issue. 

Craig [1] stated that there are three general problems in the cartesian space trajectory 

scheme: first, unreachable intermediate points; second, high joint rates near a singularity; 

and lastly, start and goal being reachable in different solutions. Meanwhile, in the joint space 

trajectory approach, the robot's motion design is to be made using joint space values such 

as joint space position, velocity, etc. The general problem of this approach is the lack of 

visualization of joint motion and position of the end-effector during the time. 

Various methods of implementation have already been established. Within that, the 

accuracy of the trajectory is an important parameter when designing the trajectory of the 

robot that operates alongside humans, such as an exoskeleton. The trajectory's accuracy can 

be viewed as an error between generated (target) trajectory and the reference robot 

trajectory. The less error shows a higher accuracy of the generating trajectory. The more 

accurate trajectory generated, the more naturally it follows human motion. 

Many methods have been discussed to improve the accuracy of trajectory in 

exoskeleton robots. In Gomes et al. [13], Gait Pattern Adaptation (GPA) was designed to 

generate natural human motion for the LOKOMAT rehabilitation robot. The GPA adjusted 

the generating trajectory to suit the desired trajectory based on torque interaction between 

humans and robots. This method was also studied in different approaches [14-16]. The 

NaTUre-gaits is also a technique that is used to generate the trajectory that follows natural 
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human motion for rehabilitation studies [17]. These two methods used predefined 

trajectories generated from mathematical (cubic) or recorded motion data. Other methods 

like Complementary Limb Motion Estimation (CLME) [18], Neural Oscillator [7], Gait 

Phase Switching Algorithm (GPSA) [6], Radial Basis Function (RBF) [19], Neural Network 

[9], polynomial [20,21], Probabilistic Foam Method (PFM) [22] have also been used to 

improve accuracy of the generated trajectory profiles to the wearer.  

However, all the methods discussed so far require redefining constraint parameters (i.e., 

start time, stop time, start velocity, stop velocity, etc.) before implementing the method in 

the robot can be done. There are advantages of having many constraints that need to be 

considered, such as smooth trajectory, accuracy, etc. However, these constraints can 

increase the trajectory generator's computation cost and computation error [2]. 

This paper presents the trajectory generation algorithm that generates an accurate 

human-like trajectory profile to overcome the limitations stated. Unlike other methods, this 

method does not require additional parameters such as velocity or acceleration at the 

trajectory via-point to design trajectory profile. The only parameter required in this design 

is the joint displacement of the actuator. The complete cycle of time series data consisting 

of natural human motion data is mapped using the curve fitting approach; then, the quintic 

polynomial coefficient is produced. The polynomial trajectory is used because of its high 

precision and ability to calculate the kinematics, dynamics, and control parameters [23]. 

This paper's main contribution lies in proposing a trajectory generation algorithm that 

generates highly accurate and natural human-like trajectory profiles. This algorithm can 

potentially improve the performance and usability of robotic systems in a range of 

applications, such as grasping and manipulation tasks. 

2. POLYNOMIAL CURVE FITTING TRAJECTORY PLANNING 

(PCFTP) 

In robotics, trajectory planning is designed by assigning the initial (t0) and final time 

(tf) and other constraints on position, velocity, acceleration and so on at t0 and tf [2]. For the 

robot application that works alongside humans, such as an exoskeleton, the performance of 

the trajectory generator is how close the generated trajectory is to the human reference 

trajectory. Figure 1 shows the application of an exoskeleton robot in the rehabilitation 

process taken from [24]. In this application, the robot must generate a similar joint trajectory 

profile to the normal human walking joint to ensure the patient recovers quickly and avoids 

discomfort.  

 

Fig. 1: Illustration of hip, knee and ankle joint trajectory in exoskeleton robot application taken 

from [24]. 
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The trajectory generation technique requires some parameters to be set up before 

generation of the required trajectory. Table 1 shows the initial trajectory parameters. The 

trajectory generation technique requires the generation of a reference trajectory. It is shown 

that the current trajectory technique requires multiple initial setup trajectory parameters. 

Having multiple parameters in the initial setup will improve the accuracy performance of 

the trajectory generator. However, this will burden the system for processing and require 

exact mathematical modeling of the robot. 

Table 1: Initial parameter setup for trajectory generation technique 

Trajectory Generation Technique Initial Trajectory Parameters  

Quintic Polynomial Start Boundary Parameter: 

i.e., Starting angular position, velocity, acceleration, jerk, 

tStart 

Stop Boundary Parameter: 

i.e., Stoping angular position, velocity, acceleration, jerk, 

tStop 

Neural Oscillator Neuron Parameters: 

Frequency, coupling coefficients, different phase matrix 

CoM Trajectory Parameters: 

Gait Phase Switching Algorithm (GPSA) Neuron Parameters: 

Frequency, coupling coefficients, different phase matrix 

Gait Parameters: 

i.e., amplitude, regulating signal 

Figure 2 shows the algorithm based on a curve fitting approach to identify the 

polynomial coefficients. This algorithm can be applied to all strategies discussed in [3] since 

it requires complete data to represent the motion. These data can be off-line, obtained from 

biomechanical studies, or come from an on-line time-series sequence received from the 

actuator encoder. However, in this paper, our algorithm will implement and evaluate only 

off-line situations. This paper used the human hip motion profile data from a biomechanical 

study [24] as a reference trajectory. 

Algorithm 1: PCFTP 

1: Determine Data size of motion profile, mData  

2: Rearrange motion data followed by phases boundary parameter i = phases number 

3: Determine the size of phases data mSi 

4: while (i < imax) 

5: Select polynomial power (n) 

6: while (∑mSi < mData) 

7: Calculate the polynomial coefficient for selected n, mData, and mSi 

8: end 

9: end 

Fig. 2: PCFTP Algorithm. 

Step 1: Data Acquisition  

The dataset used in this paper was based on a biomechanics study conducted by [25], 

which employed 40 healthy subjects. The dataset consisted of two different groups, adult 

and young, with different walking speeds recorded and labeled as normal walking (N), very 

slow walking (XS), slow walking (S), medium walking (m), fast walking (L), walking on 

toe (T), walking on heel (H), stair ascending (U) and stair descending (D). In this paper, we 

used an adult hip normal walking profile. This paper does not cover how joint trajectory is 
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generated from 40 healthy subjects and the criteria for selecting their subject. Other datasets 

can also be used and are not rigid from the stated researcher. 

Step 2: Divided Motion Data Based on Biomechanical Gait Cycle  

 

Fig. 3: Phases of human walking gait. 

In human biomechanical studies, gait is defined as any method of locomotion 

characterized by periods of loading and unloading of the limbs [26]. This definition is not 

restricted to walking; it includes running, hopping, skipping, swimming, and cycling. Since 

walking is the most frequently used gait in the activities of daily living (ADLs), most of the 

research definition of gait refers to walking.  

The gait cycle in walking is defined as a time interval or sequence of motion occurring 

from heel strike to heel strike [27]. Fig. 3 shows the complete phases of the human walking 

gait, with seven phases in the human walking motion [28]. In general, human walking data 

shows that there is smooth and continuous motion between phase transitions (via-point 

section). This became the most challenging parameter for both methods to design trajectory 

profiles while accurately ensuring motion continuity and smoothness.  

Table 2 shows the complete walking cycle's human hip motion parameter phase. Each 

phase has its own parameter starting and ending. Based on [1], these starting and ending 

parameters are critical when designing the via-point. 

Table 2: Human hip phases joint angle parameters based on [28] and [25] 

Gait Phases Gait Cycle 

(%) 

Starting Angle 

(Deg) 

Ending Angle 

(Deg) 

Starting 

time (s) 

Ending 

time (s) 

Initial Contact 0 – 10 25.20 21.00 0.00 0.10 

Mid Stance 10 – 30 21.00 -1.30 0.10 0.30 

Terminal Stance 30 – 50 -1.30 -16.10 0.30 0.50 

Pre Swing 50 – 60 -16.10 -10.40 0.50 0.60 

Initial Swing 60 – 73 -10.40 15.10 0.60 0.73 

Mid Swing 73 – 87 15.10 25.10 0.73 0.87 

Terminal Swing 87 - 100 25.10 24.10 0.87 1.00 

Step 4: Polynomial Curve Fitting Trajectory Planning  

The curve fitting technique is the main core of our proposed algorithm. It determines 

the polynomial coefficient from the normative hip walking profile. The curve fitting method 

is chosen because of its ability to deal with a series of data. There are two approaches in the 

curve fitting technique that have the ability to generate a polynomial coefficient. The first 

is Least-squares regression (LSR), or regression in short, and the second is an interpolation. 

This paper used the least-square regression approach to generate a polynomial coefficient.  

The polynomial regression curve fitting technique is formulated in Eq. (1). Where ai is 

a polynomial coefficient. The core idea of this technique is the regression that is used to 
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minimize the sum of the squares of residuals, Sr between the desired yi and the forecast y’ 

as shown in Eq. (2), where all summation from i =1 through m (number of data) and n 

(polynomial order).  

θ(t)= ∑ ait
i

n

i=0

 (1) 

Sr= ∑∑ (y
i
-ajxi

j
)
2
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The standard error Sy x⁄ , Eq. (5) and the coefficient correlation, Eq. (6), is used as a 

performance evaluation for the PCFTP method.  

Sy x⁄ =√
Sr

m-(n+1)
 (5) 

r2=
∑ (y

1
-y̅) - ∑ S

r

∑ (y
1
-y̅)

 (6) 

3. SIMULATION SETUP 

We used MATLAB to demonstrate the accuracy of the trajectory generated from the 

PCFTP algorithm and the effectiveness of generation using the trajectory algorithm 

compared to the quintic polynomial method.  

3.1 Comparison of Quintic Trajectory Generation for Generating Hip Joint 

Trajectory Profile 

The quintic polynomial is a fifth-degree polynomial formulated in Eq. (7). Besides 

position, other constraints, such as velocity and acceleration, must be considered when 

designing the trajectory. A higher-order polynomial gives more constraints (time 

derivatives) that can be used to adjust the trajectory to suit the application requirement. 

However, the more constraints are considered, the more complex it is to determine the 

unknown coefficients. This constraint provided high computation cost and produced a 

numerical error for a higher value of polynomial degree [2]. 

The quintic polynomial can provide five constraints instead of three, as mentioned in 

Eqs. (7) to (9). These three constraints are enough to obtain a smooth trajectory profile. The 

suitable initial and final constraints for the position Eq. (7), velocity Eq. (8), and acceleration 
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Eq. (9) [2] are determined first. Besides, the number of boundary constraints is usually even, 

and the degree of the polynomial function is odd. 

𝜃(𝑡) = ∑𝑎𝑖𝑡
𝑖

𝑛

𝑖=0

 (7) 

𝜃̇(𝑡) = ∑𝑖𝑎𝑖𝑡
𝑖−1

𝑛

𝑖=1

 (8) 

𝜃̈(𝑡) = ∑𝑖(𝑖 − 1)𝑎𝑖𝑡
𝑖−2

𝑛

𝑖=2

 (9) 

Therefore, from Eq. (7) to (9), there are six boundary constraints (starting position, 𝜃0, 

ending position, 𝜃𝑓, starting velocity, 𝑣0, ending velocity, 𝑣0, starting acceleration, 𝑠0 and 

ending acceleration, 𝑠𝑓) of a quintic polynomial as shown in Eq. (10), that needs to be 

determined. 

𝜃(𝑡0) =  𝜃0 

(10) 

𝜃(𝑡𝑓) =  𝜃𝑓 

𝜃̇(𝑡0) =  𝑣0 

𝜃̇(𝑡𝑓) =  𝑐 

𝜃̈(𝑡0) =  𝑠0 

𝜃̈(𝑡𝑓) =  𝑠𝑓 

This constraint is then used to determine the quintic coefficient, as shown in Eq. (11). 

The first three coefficients, a0, a1, and a2, are the initial values of the generated trajectory's 

position, velocity, and acceleration.  

Table 3 shows the polynomial coefficients generated using quintic polynomial 

trajectory planning for each sub-phase. Table 4 shows the polynomial coefficients using 

curve fitting. All these coefficients are then used again to generate the trajectory. This 

trajectory is then compared to the recorded trajectory profile to validate the accuracy and 

effectiveness of the proposed method. 

𝑎0 = 𝜃0 

(11) 

𝑎1 =  𝜃0
̇  

𝑎2 =
 𝜃0

̈

2
 

𝑎3 =
20𝜃𝑓 − 20𝜃0 − (8𝜃𝑓̇ + 12𝜃0̇)𝑡𝑓 − (3𝜃̈𝑓 − 𝜃̈0)𝑡𝑓

2

2𝑡𝑓
3  

𝑎4 =
30𝜃𝑓 − 30𝜃0 − (14𝜃𝑓̇ + 16𝜃0̇)𝑡𝑓 − (3𝜃̈𝑓 − 2𝜃̈0)𝑡𝑓

2

2𝑡𝑓
4  

𝑎5 =
12𝜃𝑓 − 12𝜃0 − (6𝜃𝑓̇ + 6𝜃0̇)𝑡𝑓 − (𝜃̈𝑓 − 𝜃̈0)𝑡𝑓

2

2𝑡𝑓
5  

307



IIUM Engineering Journal, Vol. 24, No. 2, 2023 Abdul Jalil et al. 
https://doi.org/10.31436/iiumej.v24i2.2296  

 

 

4. RESULTS 

This section comprehensively analyses a significant problem known as the via-point 

disjointed problem. Within this context, we explore trajectory accuracy, employing two 

distinct methods: the quintic polynomial method and the PCFTP method. By thoroughly 

examining and comparing the outcomes generated by these methods, we aim to understand 

better their respective strengths, limitations, and overall effectiveness in achieving accurate 

trajectories. Error! Reference source not found. shows the hip joint motion simulation r

esult based on the quintic polynomial trajectory method, and Error! Reference source not 

found. shows the hip joint motion simulation result based on the polynomial curve fitting 

method. 

 

Fig. 4: Hip joint trajectory profile generated using quintic polynomial. 

4.1  Via-point Disjointed Analysis 

Via-point is an intermediate position that the system or object needs to pass through 

during its movement from the initial position to the final destination. The via-point is located 

at every phase's transition. Based on Winter [28], the seven phases of human walking require 

six via points for the complete cycle. As mentioned in the previous section, the ending 

position for Phase 1 is a starting position for Phase 2.  

 

Fig. 5: Hip joint trajectory profile generated using PCFTP. 
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Table 3: Coefficient of a polynomial using quintic polynomial trajectory method 

Phases Coefficient 

a5 𝒂𝟒 𝒂𝟑 𝒂𝟐 𝒂𝟏 𝒂𝟎 

1 -8.102 x105 2.108 x105 17178 0 0 25.2 

2 32128 -35861 15985 -3572.4 285.07 15.497 

3 -2268.6 4303.8 -2828.9 958.46 -298.374 48.981 

4 -8.039 x106 -2.216 x106 2.439 x106 1.339 x106 3.666 x105 -40040 

5 1.932 x105 -6.268 x105 8.072 x105 -5.152 x105 1.630 x105 -20480 

6 -99297 4.0306 x105 -6.5399 x105 5.2952 x105 -2.136 x105 34301 

7 64871 --3.364 x105 6.915 x105 -7.052 x105 3.571 x105 -71816 

 

Table 4: Coefficient of a polynomial using the PCFTP method 

Phases Coefficient 

𝒂𝟓 𝒂𝟒 𝒂𝟑 𝒂𝟐 𝒂𝟏 𝒂𝟎 

1 75178 -82804 14364 -1158.9 6.0584 25.193 

2 91252 -88042 32870 -5978.7 424.14 13.481 

3 -88293 1.72 x105 -1.32 x105 50020 -9507.7 732.37 

4 2.140 x105 -5.62 x105 5.90 x105 -3.09 x105 80235 -8293.4 

5 1.61 x105 -5.34 x105 7.02 x105 -4.58 x105 1.48 x105 -19082 

6 84648 -3.37 x105 5.33 x105 -4.22 x105 1.67 x105 -26431 

7 2.17 x105 -1.06 x106 2.08 x106 -2.02 x106 9.84 x105 -1.91 x105 
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Table 5 compares generated via-point for each sub-phase between the quintic 

polynomial and PCFTP. It shows that the quintic polynomial method handles via-points 

without encountering problems during each phase. However, the PCFTP method 

demonstrates a notable concern with disjointed via-points in the phase transitions. This 

disparity highlights the quintic method's ability to seamlessly incorporate via-points across 

all phases, while the PCFTP method experiences challenges in maintaining continuity and 

cohesiveness in the trajectory when navigating through different phases. 

Table 5: Start and Stop Position at via-point 

Phases Quintic Polynomial (deg) PCFTP (deg) 

Start Stop Start Stop 

1 25.200 21.000 25.193 21.046 

2 21.000 -1.300 21.087 -1.265 

3 -1.300 -16.100 -1.303 -16.167 

4 -16.100 -10.400 -16.143 -10.443 

5 -10.400 15.100 -10.453 13.473 

6 15.100 25.100 13.480 25.316 

7 25.100 24.100 25.310 24.086 

The issue with our algorithm is rooted in the fundamental characteristics of the curve 

fitting technique. This method utilizes a best-fitting strategy to effectively incorporate and 

precisely depict the data within a designated interval, as outlined in Eq. (5) and Eq. (6). On 

the other hand, the quintic method integrates the initial and final values as constraints in Eq. 

(11). The utilization of constraints guarantees that the trajectory's initiation and termination 

occur at predetermined positions, thereby enabling accurate management of the start and 

end points. 

In Table 6, the absolute errors associated with each via-point are presented, reflecting 

the performance of the PCFTP method. Notably, the most significant error is observed 

during the transition from phase 4 to phase 5, specifically for the stop position, with an error 

magnitude of approximately 1.627°. Additionally, the transition from phase 5 to phase 6 

exhibits an error of approximately 1.620°. It is important to note that these errors directly 

impact the overall smoothness and continuity of the trajectory, underscoring the need for 

further analysis and potential improvements in the PCFTP method to mitigate such errors 

and enhance trajectory quality. 

Table 6: Absolute Error of a Via-point in Each Phases Transition for Curve Fitting 

Phases Transition Absolute Error Start Position 

(deg) 

Absolute Error Stop 

Position (deg) 

1 – 2 0.007 0.046 

2 – 3 0.087 0.035 

3 – 4 0.003 0.067 

4 – 5 0.043 1.627 

5 – 6 1.620 0.216 

6 – 7 0.210 0.014 

4.2  Overall Fitting Performance Analysis 

An extensive evaluation was performed to compare the fitting errors of the quintic 

polynomial method and PCFTP methods' fitting errors to obtain significant insights into the 

precision and efficiency of trajectory generation techniques. Fig. 6 compares fitting errors 

between the quintic method and the curve fitting method. Based on Fig. 6, the PCFTP 

approach has a lower fitting error than the quintic trajectory generation. 
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Fig. 6: Fitting error comparison between quintic polynomial and PCFTP methods. 

Table 7 shows the comparison of MAE for each phase for both methods. MAE is the 

mean of fitting error for each phase. Table 6 shows that the polynomial curve fitting method 

gives a high efficiency with the lowest generation error 0.002° phase. However, the lowest 

generation error for the quintic polynomial approach is 0.086° phase. The overall MAE for 

the quintic polynomial approach is 0.112° phase and 0.011° phase for the polynomial curve 

fitting approach. The MAE represents the difference between the desired trajectory and 

generated trajectory. 

Table 8 shows the Root Mean Square Error (RMSE) comparison between the quintic 

polynomial and PCFTP methods. These values indicate the accuracy of the trajectory 

profile. It shows that the PCFTP method exhibits superior precision in trajectory profile 

compared to the quintic polynomial method. 

Table 7: Mean absolute error (MAE) comparison between quintic and PCFTP methods 

Sub-Phase Method 

Quintic (deg) Curve Fitting (deg) 

1 0.115 0.009 

2 0.101 0.032 

3 0.164 0.012 

4 0.086 0.002 

5 0.101 0.013 

6 0.089 0.004 

7 0.129 0.006 

 
Table 8: RMSE comparison between quintic polynomial and PCFTP methods 

Sub-Phase Method 

Quintic (deg) Curve Fitting (Deg) 

1 7.030 x 10-2 6.783 x10-15 

2 2.900 x10-2 4.289 x10-14 

3 1.431 x10-1 4.602 x10-13 

4 1.440 x10-2 4.151 x10-11 

5 9.210 x10-2 1.221 x10-11 

6 3.730 x10-2 6.500 x10-11 

7 1.267 x10-1 3.035 x10-10 
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Considering the RMSE values obtained, we can observe that the PCFTP method 

consistently outperforms the quintic polynomial method regarding trajectory accuracy. This 

outcome underscores the efficacy of the PCFTP method in achieving a closer fit to the 

desired trajectory, resulting in minimized deviations from the intended motion path. 

These findings highlight the potential advantages of adopting the PCFTP method over 

the quintic polynomial method, particularly in applications with high trajectory accuracy, 

such as robotics, motion planning, and autonomous navigation systems. 

5. CONCLUSION 

In conclusion, the proposed PCFTP algorithm generates natural human motion profiles 

more accurately than the quintic polynomial trajectory generation method. The algorithm 

does not require constraint parameters such as angular position, velocity, and acceleration, 

which is a significant advantage. However, it requires the complete datasets or trajectory 

profiles to be modelled, which can sometimes be challenging. The proposed algorithm 

achieved a trajectory profile accuracy of 99.8% and precision of 0.002°, significantly 

improving over existing methods. Moreover, the performance validation is based on human 

biomechanics walking data from [25]. This walking data is not based on a single person but 

on the normalization of 40 healthy people. Different biomechanics data can be used as well 

instead of this data. However, the result might vary slightly due to a few factors. First, the 

curve fitting technique performance is based on data trends in each segment or phase. If the 

data trend is well segmented, the fitting performance is high. Second, the polynomial 

degrees are used to model the trajectory data. 

However, an open question for a proposed method is how to improve, especially in 

disjointed via-point problems on every phase transition. This disjointed issue will affect the 

overall smoothness of the motion profile. The future work for this research is the new 

extension of this method that determines the numbers of via-points based on best fitting 

accuracy (Eqs. (5) and (6)) and continuity. Also, implementing the proposed algorithm to 

real-time data will guide us to a new dimension of using the curve fitting approach in 

trajectory planning since the curve fitting approach works only if all fitting data are 

complete.  
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