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ABSTRACT: Palmprints can be characterized by their texture and the patterns of that 

texture dominate in a vertical direction. Therefore, the energy of the coefficients in the 

transform domain is more concentrated in the vertical sideband. Using this idea, this 

paper proposes the characterization of the texture features of the palmprint using zero-

crossing signatures based on the dyadic discrete wavelet transform (DWT) to effectively 

identify an individual. A zero-crossing signature of 4 x 256 was generated from the 

lower four resolution levels of dyadic DWT in the enrolment process and stored in the 

database to identify the person in recognition mode. Euclidean distance was determined 

to find the best fit for query palmprints zero-crossing signature from the dataset. The 

proposed algorithm was tested on the PolyU dataset containing 6000 multi-spectral 

images. The proposed algorithm achieved 96.27% accuracy with a lower recognition 

time of 0.76 seconds. 

ABSTRAK: Pengesan Tapak Tangan boleh dikategorikan berdasarkan ciri-ciri tekstur 

dan corak pada tekstur yang didominasi pada garis tegak. Oleh itu, pekali tenaga di 

kawasan transformasi adalah lebih penuh pada jalur-sisi menegak. Berdasarkan idea ini, 

cadangan kajian ini adalah berdasarkan ciri-ciri tekstur pada tapak tangan dan tanda 

pengenalan sifar-silang melalui transformasi gelombang kecil diadik yang diskret 

(DWT) bagi mengecam individu. Pada mod pengecaman, tanda pengenalan sifar-silang 4 

x 256 yang terhasil daripada tahap diadik resolusi empat terendah DWT digunakan 

dalam proses kemasukan dan simpanan di pangkalan data bagi mengenal pasti individu. 

Jarak Euklidan yang terhasil turut digunakan bagi memperoleh padanan tapak tangan 

paling sesuai melalui tanda pengenalan sifar-silang dari set data.  Algoritma yang 

dicadangkan ini diuji pada set data PolyU yang mengandungi 6000 imej pelbagai-

spektrum. Algoritma yang dicadangkan ini berjaya mencapai ketepatan sebanyak 

96.27% dengan durasi pengecaman berkurang sebanyak 0.76 saat. 

KEYWORDS:multi-scale edge detection; palmprint recognition; feature extraction 

1. INTRODUCTION

People authentication is now a necessity in the digital world. Biometric-based

identification is considered to be a most reliable system for protection and reliable 

authentication. In the current mechanization era, artificial intelligence systems prepare 
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data about everything and use it to solve several complex problems. Although many 

organizations have built state of the art security systems, recent terrorist attacks have 

uncovered significant vulnerabilities in complex security schemes. Consequently, various 

organizations look to the uniqueness of each human body to establish information 

frameworks, often called biometrics, because they are more “real” or more difficult to 

counterfeit. Automatic personal identity recognition can be accomplished through the use 

of different biometric identifiers. In many biometric baseline systems, anatomical 

individuality such as thumbprints, fingerprints, and morphology of the iris, retina, head, 

nose, or hand or behavioral characteristics such as signature, keystroke mechanics, and 

gait are used for identification. Each biometric innovation has its own particular merits 

and constraints, and therefore no system exists with better performance for all applications 

[1].Biometric System, which uses the iris, is one of the mainstream biometric frameworks 

with exceptionally high precision [2]. Since the iris acquisition method is costly, it 

requires very high cooperation from the user and has a high failure rate of enrolment. 

Because of their simplicity, good accuracy, and low cost, face and finger print recognition 

have gained a large popularity. However, the present COVID situation makes these 

systems fail from occlusion due to masks hiding the facial features and frequent 

sanitization reducing the fingerprint features [3]. Recently, a hand geometry-based 

identification has been proposed in [4]. However, this system is tedious, sensitive to the 

acquisition process, and computationally complex. New emerging ear trait recognition is 

explained in [5]. Mewada et al. [5] used CNN for learning and discriminating between ear 

features. A moving human leg angle-based gait recognition system, explained in [6], uses 

average statistical features of eight frames. 

A palmprint-based identification system has many advantages compared to other 

biometric systems: 1) Hand features of the human have high stability and uniqueness. 2) 

For data, acquisition needs extremely minimal support from clients. 3) Non-intrusive data 

collection. 4) Inexpensive devices are sufficient to acquire good data quality. 5) The 

mechanism provides high accuracy and uses low-resolution images. 6) More features can 

be extracted from palmprints as it allows for a larger surface area compared to 

fingerprints. 7) Since low-resolution imaging sensors are used for acquiring palmprint 

images, the computation required for pre-processing and extracting features is minimal. 8) 

palmprints can be considered a trustworthy human identifier as these patterns are unique in 

monozygotic twins [7].  

Therefore, this paper presents a unique approach requiring less computation and 

complexity in the palmprint recognition process. The proposed system is sustainable with 

low memory devices and makes it suitable for embedded platform implementation. 

2.   LITERATURE STUDY 

A recent advancement in machine learning has obtained the greatest attention in 

classification models. Various deep learning based neural networks outperformed the 

traditional methods of classification, achieving enormous classification accuracy. Jia et al. 

[8] presented a detailed study on various deep learning-based palmprint recognition 

algorithms. All these algorithms succeeded in achieving classification accuracy ranging 

from 80% to 100%. From the computation study, it has been observed that GPU based 

computation efficient architecture requires at least 390M FLOP operations (i.e. 

ScarletNAS architecture) and minimum identification time of 183 ms for NASNet 

architecture (excluding training time). Thus, deep learning provides the highest accuracy 

at the cost of computation time and hardware complexity.  

223



IIUM Engineering Journal, Vol. 23, No. 1, 2022 Chaudhari et al. 
https://doi.org/10.31436/iiumej.v23i1.2086 

 

Another comparative analysis of palmprint recognition was presented in [9]. This 

study involved all traditional methods used in multispectral recognition including principle 

component analysis, Fisher linear discrimination, fuzzy method, edge map generation, 

radon transform, etc. Bounneche et al. [10] used oriented log-Gabor filters to enhance the 

recognition rate. Features obtained from the log-Gabor filters were matched using 

hamming distance for palm identification. The feature extraction required an average time 

of 894 ms and a matching time of around 5.6 ms. 

To tackle the problem of misalignment, a Local Micro-structure Tetra Pattern 

(LMTrP) based local feature extraction was proposed in [11]. Initially, Gabor based 

features were obtained and later a histogram using LMTrP in local regions was generated 

for matching purposes. Raghavendra et al. [12] proposed discrete wavelet transform based 

multi-spectral fusion of palm features. They extracted the average coefficients from DWT 

from each spectrum of the palm and fused these coefficients based on a weighted function. 

Then inverse DWT was calculated to get a fusion of ROI from the wavelet domain. For 

identification purposes, Gabor filters were used with distance calculation. They achieved a 

5.97 error rate in classification. The overall method was complex, as it requires multiple 

spectrum’s DWT feature fusion.  

The moving human leg angle-based gait recognition system is explained in [13] and 

uses average statistical features of eight frames. A least square regression model named 

salient and discriminative descriptor learning method described in [14] solved the sparse 

nonnegative noise interference error problem. Kokila et al. used PCA to extract the 

features and an ANN model for matching purposes [15]. A simple basic operation 

(additions and subtractions) based method that forms code for a palmprint is described in 

[16]. Chaudhari et al. [17] used a Histogram of Radon transform for feature extraction 

from low resolution images. 

Jaafar et al. [18] touched on a less recognized algorithm, where a mobile camera was 

used for palm acquisition. They used histogram equalization and thresholding for feature 

extraction. A Fuzzy based nearest centroid neighbor was proposed for palm recognition 

achieving accuracy of 98.78%.  Hong et al. [19] de-blurred palm images using a Gaussian 

Focused degradation model and a Vese–Osher decomposition model was used to extract 

the texture features from ROI. The normalized correlation coefficient was calculated to 

find the similarity between two palms and obtained 0.9210 EER.  

A sparse based image enhancement, PCA based dimensionality reduction and voting 

based recognition, was proposed in [20]. This algorithm was tested on a PolyU dataset and 

obtained a 99.87% accuracy. Tamrakar and Khanna [28] used approximation coefficients 

obtained from the Haar wavelet for feature extraction. Further, the image was processed 

with a Gaussian derivative to obtain local phase information. Later,a block-based 

histogram was used as a feature vector for recognition. They claimed 100% recognition 

rate on PolyU dataset. Their extraction time and recognition time were lower (i.e. 16.942 

ms and 188.4471 ms) but the training time requirement was 3502 ms. 

This paper presents a unique approach where feature extraction and matching require 

less time and make the system approachable to real-time. The proposed system uses 

dyadic wavelet transform, which is fast and compatible with hardware as it works in 

discrete and power of 2. The discriminative features obtained using signature formation 

makes it robust for intra-variation. Further, reduction in matching time is obtained with 

exclusion of the coarsest level features.    
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3.   DISCRETE DYADIC WAVELET TRANSFORM 

Edges of the palm print are important features in the recognition process.  An edge 

can be thought of as a series of fast transitions in image amplitude. For a given image 

f(x,y), the image gradient ∣∇f(x,y)∣ takes a local maximum value indicating the edge. 

However, image texture also obtains a similar transition. Therefore, to discriminate the 

edge from the texture, scale factor needs to be considered in the calculation. The dyadic 

wavelets that account for the scaling and smoothing function can easily discriminate the 

edges from the texture regions. The DDWT of image f(x,y) calculated multi-scale edge at 

point (s,t) can be expressed as     

𝑊𝑗
𝑘(𝑠, 𝑡) =< 𝑓(𝑥, 𝑦)𝜑𝑗

𝑘(𝑥 − 𝑠, 𝑦 − 𝑡) > (1) 

where j and k =1, 2 are integers andφ is the wavelet function which can be expressed as  

𝜑𝑗
𝑘(𝑥, 𝑦) = 2

𝑗

2𝜑(2𝑗(𝑥, 𝑦) − 𝑘) (2) 

The modulus of DDWT |𝑊𝑗
𝑘(𝑠, 𝑡)|reaches a maximum value locally in the 

neighbourhood of point (s,t).  Similar to the 1D example, the scale dependency of the 

magnitude of the modulus maxima is applied to the Hölder exponent of f(x,y) and hence 

provides knowledge to differentiate between edges and textures. 

For a certain decision of wavelets, the DDWT change can be executed inside a fast 

hierarchical digital filtering scheme using multi-resolution analysis. A Mallat pyramid 

based hierarchical filtering to obtain DDWT is shown in Fig.1. 

 

Fig.1: Filter bank realization of a 1-D dyadic DWT at three levels (left) of DWT decomposition 

and (right) DWT reconstruction, where G(w) is a complex conjugate of H(w). 

In Fig.2, 𝐻(𝜔) is a low pass filter, 𝐺(𝜔)is a high pass filter, and 𝐾(𝜔)is a high pass 

filter for 𝑟 = 1 and a low pass filter when 𝑟 = 2 and 𝑝 > 0. Figure 2 represents the 

successive partition of the frequency spectrum.  The initial frequency spectrum of [0, π] is 

divided into equivalent subintervals i.e. [0, π/2] and [π/2, π]. The upper spectrum has T/2 

DDWT coefficients. These coefficients are the basis for the next level. In the next level of 

the decomposition from the previous level-1, the lower spectrum is further subdivided into 

two equal subintervals i.e. [0, π/4] and [π/4, π/2].The subdivision process proceeds, 

successively separating the lower subintervals until it can no longer go any further. 
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Let the sampling shifted digital filter be expressed as𝐹𝑠(𝜔) = 𝑒−𝑗𝜔𝑠𝐹(𝜔).  This digital 

filter can be formulated to divide the spectrum into two intervals. The required condition 

in the design of these filters is that filters should be asymmetrical and they should have 

small compact support. The family 𝐺(𝜔), 𝐻(𝜔) 𝑎𝑛𝑑 𝐾(𝜔) that satisfy these conditions is 

expressed as 

𝐻(𝜔) = 𝑒𝑗𝜔/2 (cos (
𝜔

2
))

2𝑝+1

𝐺(𝜔) = 4𝐽𝑒𝑗𝜔/2 ( sin (
𝜔

2
))

𝑟

𝐾(𝑤) =
1 − |𝐻(𝑤)|2

𝐺(𝑤)
 

In the opposite operation of the decomposition referred as reconstruction, the signals 

are up-sampled to obtain the signal back. A unique approach of signature formation from 

these wavelet decompositions and reconstructions has been proposed in next section. 

Fig.2: Sample palm print signatures (a) palmprint ROI (b) corresponding PS obtained with 

reference to the horizontal line passed from the center of the extracted ROI. 

4.   PALMPRINT FEATURE EXTRACTION USING DDWT  

The basic requirement in palmprint recognition is that obtained features shall be 

translation and rotation invariant. Therefore, the region providing distinguished features 
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must be obtained first to extract these features. This region extraction process, consisting 

of five steps, is well explained in [21]. The main contribution of this paper lies here. The 

traditional wavelet approach uses multi-resolution edge-oriented features i.e. principle 

lines of palms, ridges i.e. loop, arch and whorl or cores and delta in the recognition 

process. This paper proposes the formation of zero-crossing signatures using DDWT. The 

DDWT is applied to this region providing unique features for recognition. These steps to 

obtain the zero-crossing signature of each palm are as follow: 

The palmprint's extracted ROI has been used to plot the signature in the pre-

processing operation step. To get the signature, a horizontal line is passed through the 

center of the ROI. The pixel intensities are recorded on that line and a corresponding 

unique signature has been generated for each palmprint. Figure 2 demonstrates the unique 

signatures obtained from three different palmprints. 

 

 
(a) (b) 

 
 

(a) (b) 

 

 
  

(a) (b) 

Fig.3: The palmprint signatures at various scales (a) extracted ROI of palmprint, (b) 

corresponding PS along with six resolution levels of the DDWT. 

The signals obtained using a piecewise constant function between sequences of two 

consecutive zeros are used as unique features to represent the palmprint instead of the zero-

crossing of the wavelet transform at various scales. This signal is referred to as a Piecewise 

Constant function of Palmprint Signature (PCPS).  For DDWT, all scales are restricted 
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with power of 2 only. The PS has been calculated with a finite resolution that forces a finer 

scale while calculating the dyadic wavelet transform instead of computing the wavelet 

transform on all scales of2𝑗for j varying from -∞ to +∞. The resolution is restricted by the

finite larger scale and a nonzero finer scale. For implementation purposes, the finer scale is 

equal to 1 and the largest scale is 2𝑗. Further experimentation has been carried out at

different resolution/scales of DDWT. Figures 3 and 4 present the PS and corresponding 

PCPS obtained using DDWT at various scales. 

(a) (b) 

(a) (b) 

(a) (b) 

Fig.4: Piecewise constant function representation of PS (a) extracted ROI of palmprint, (b) 

PCPS corresponding to the lowest four resolution levels of the dyadic wavelet transform. 

5. RESULTS AND DISCUSSION

PolyU database [23], available on the internet, has been used for dyadic DWT testing

for palmprint images as unimodal biometrics. In the experiment, 4 level dyadic 

decomposition was used.  Features based on discrete dyadic wavelets were measured to 

evaluate the performance accuracy of the proposed algorithm. When testing the algorithm, 

each image from the database was matched with the same dataset's remaining images. 
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If the test image matched another image in the dataset, it was counted as correct 

matching. Otherwise, it will be counted as incorrect matching. In the matching method, the 

Euclidean distance between the feature sets was used. The minimum Euclidean distance 

amongst two palmprints' features was considered the best fit for the test image for stored 

prototypes. The system's performance was calculated using false acceptance ration (FAR) 

and genuine acceptance ration (GAR). 

 

Fig.5: Performance of the proposed algorithm of person identification using discrete dyadic wavelet 

transform in terms of percentage FAR and GAR plotted at various thresholds. 

FAR represents that the system has accepted and recognized the imposter, and its 

values must be as low as possible. GAR means true acceptance of the user. The FAR and 

GAR percentages for palmprints were plotted, taking into account various threshold 

values. Fig.6 shows this performance plot. The maximum recognition accuracy of 96.27% 

is achieved for palmprint images from the PolyU database using dyadic DWT. The testing 

time of 0.76 seconds indicates the computational efficiency of the algorithm. The Table 1 

discusses the comparative analysis of the proposed DWT based signature model with other 

DWT based palmprint recognition models. 

Table 1: Palmprint recognition accuracy comparison using DWT approaches 

Authors Key Points Max. Accuracy 

Kozik and Choraś [24] Haar wavelet transform based 

geometrical feature extraction 

94% 

Giełczyk et al. [25] Computationless geometric feature 

extraction 

91% 

L. Zhang  and 

D. Zhang [26] 

Fusion of signatures of gravity, density, 

spatial disperse and energy in DWT 

domain 

98% 

Agrawal et al. [27] Curvelet transform based energy 

computation 

85% 

Chaudhari et al. 

(Proposed method) 

Zero crossing signature using Dyadic 

DWT 

96.27% 

Kozik and Choraś [24] developed geometric characteristics from the Haar wavelet 

transform and Giełczyk et al. [25] proposed a further reduction in computation. Zhang and 

Zhang [26] calculated the statistical signatures across all the DWT scale using the density, 

energy, gravity, and dispersivity and achieved an accuracy of 98% at the cost of high 

future sets. In contrast, the proposed method uses the zero-crossing points to establish a 
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signature size of 4X 256 and can achieve near-by precision at the lower future level. Thus, 

the strategy proposed is more effective than other methods focused on the DWT. 

Table 2 presents the computational time requirement from the literatures section. As 

discussed, machine learning approaches can achieve better performance but at the cost of 

long computation i.e. training time. Table 2 suggests that the accuracy of the traditional 

methods is also better and require less execution time. Here, the extraction of the palm 

region has not been considered and computation has been partitioned into two parts: the 

feature extraction process and the matching process. Gabor-based approaches require a 

long time for feature extraction since the large number of orientations and scales in Gabor 

forms the large number of features. Therefore, their feature extraction time is large. 

Wavelet has only four bands per unit decomposition and therefore, it requires less 

execution time in comparison with Gabor. Therefore, the proposed approach requires 

shorter execution time of 21.04 ms including only feature extraction and matching.  

Table 2: Computation time comparison with related techniques 

Reference Method Feature 

extraction time 

(ms) 

Recognition 

time (ms) 

Accuracy 

(%) 

Bounneche et al. 

[10] 

Gabor filter and 

Hamming Distance 

894 5.6 99.33 

Li et al. [11] Gabor filter + LMTrP 

histogram + Euclidean 

distance 

82.68 - 95.60 

Raghavendra et al. 

[12] 

Fusion of Haar DWT 

features from multiple 

spectrum 

- 42000 

(Total) 

96.52 

Tamrakar et al. [28]  16.94 304 99.98 

Hong et al. [18] Debluring + Vese–

Osher decomposition 

model 

30.9 0.059 99.07 

Jaafar et al. [19] Histogram equalization 

+ Thresholding + 

Fuzzy K nearest 

centroid neighbor 

- 255 

(Total) 

98.78 

Imad et al. [20] Sparse Representation+ 

PCA+ 2D-LDA + 

Voting 

- 600 (total) 99.87 

Proposed DWT + Palmprint 

Signature 

20.25 0.76 96.27 

6. CONCLUSION AND FUTURE SCOPE 

The fusion of features, i.e. multi-modal biometric, improves the accuracy at the cost 

of complexity and execution time. This paper presented an alternative to these two 

problems. Dyadic DWT has been used in palmprint retrieval and identification. The 

energy of dyadic DWT is more concentrated in the vertical sideband. Therefore, a DWT 

based multi-resolution analysis is performed to obtained coefficients characterizing the 

palm.  A zero-crossing signature is created to represent the texture features of the palm 

ROI using this sideband. The goal is to cut out recognition time and ensure recognition 

accuracy. The recognition accuracy has been improved to 96.27% without the fusion of 
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multiple features. Therefore, we can say that it provides a light-weight palmprint 

verification framework. This may be aimed for mobile applications in the future. 
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