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ABSTRACT: Parallel manipulators consist of fixed and moving platforms connected to 

each other with some actuated links. They have some significant advantages over their 

serial counterparts. While, they suffer from relatively small workspaces, complex 

kinematics relations and highly singular points within their workspaces. In this paper, 

forward kinematics of Tricept parallel manipulator is solved analytically and its 

workspace optimization is performed. This parallel manipulator has a complex degree of 

freedom, therefore leads to dimensional in-homogeneous Jacobian matrices. Thus, we 

divide some entries of the Jacobian by units of length, thereby producing a new Jacobian 

that is dimensionally homogeneous. Moreover, its workspace is parameterized using 

some design parameters. Then, using GA method, the workspace is optimized subjects to 

some geometric constraints. Finally, dexterity of the design is evaluated.  

ABSTRAK: Manipulator selari terdiri daripada platform tetap dan bergerak yang 

bersambung antara satu sama lain dengan beberapa pautan bergerak. Manipulator selari 

mempunyai beberapa kebaikan tertentu dibandingkan dengan yang bersamaan 

dengannya.  Walaupun ia mempunyai ruang kerja yang sempit, hubungan kinematik 

kompleks dan titik tunggal tinggi dalam linkungan ruang kerjanya. Dalam kajian ini, 

kinematik ke hadapan manipulator selari Tricept diselesaikan secara analisa dan 

pengoptimuman ruang kerja dijalankan. Manipulator selari ini mempunyai darjah 

kebebasan yang kompleks, yang menyebabkan ia mendorong kepada kehomogenan 

dimensi matriks Jacobian. Catatan Jacobian dibahagikan kepada unit panjang, dimana ia 

menghasilkan Jacobian baru yang homogen dimensinya. Tambahan, ruang kerjanya 

diparameterkan dengan menggunakan beberapa parameter reka bentuk.  Kemudian, 

dengan kaedah GA, ruang kerja mengoptimakan subjek kepada beberapa kekangan 

geometrik.  Akhirnya, kecakatan reka bentuk dinilaikan. 

KEYWORDS: kinematic; workspace; singularity; tricept 

1. INTRODUCTION  

Parallel manipulators are closed-loop mechanisms and consist of two main elements 

coupled through several limbs acting in parallel. One body is designated as fixed and is 

called base, while the other is regarded as movable and hence is called moving platform or 

end-effector (EE) of the manipulator. Typically, the number of actuators is equal to the 

number of degrees of freedom (DOF) of the manipulator.  

Parallel manipulators have some significant advantages over their serial counterparts, 

such as more rigidity and accuracy, higher force and torque capacity and higher speed [1, 
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2]. On the other hand, they suffer from relatively small workspaces, complex kinematics 

relations and highly singular points within their workspaces.  

Choosing a set of geometric parameters so as to achieve optimal performance is of vital 

significance in robotics research. Among all kinematic measures, workspace is the most 

important index in the design of a parallel manipulator. In this paper, the workspace of 

Tricept is parameterized using some design parameters. Moreover, some geometric 

constraints are considered in the problem. Because of nonlinear discontinuous behavior of 

the problem, GA is used here to optimize the workspace [3]. For the workspace of the 

manipulator, we evaluate local conditioning indices of the Jacobian matrices, as well.  

This paper is organized as follows. As a case study, for Tricept parallel manipulator with 

both rotational and translational DOF, forward and inverse kinematics are derived 

analytically. Moreover, Its Jacobian matrix is derived and its singularity is studied. Finally, 

we optimize the workspace of the manipulator and evaluate its local conditioning index as a 

measure of dexterity.  

2.   TRICEPT PARALLEL MANIPULATOR 

Tricept parallel manipulator, as depicted in Fig. 1, with two rotational and one 

translational DOF was introduced by Neumann [4]. Siciliano [5] studied the inverse 

kinematics and manipulability of Tricept. 

 

Fig. 1: Tricept Manipulator. 

 

The manipulator has three actuated limbs which connect the base to the moving 

platform. Each of these limbs consists of a spherical – prismatic – spherical (SPS) 

kinematic chain, where only the prismatic joint is actuated. Alternatively, one of the 

spherical joints can be replaced by a universal joint with no side effect on the kinematic 

equations. In either case, as each of the actuated limbs has mobility of at least 6-DOF, a 

passive prismatic–universal (PU) limb exists at the centre of the mechanism to constrain the 

mobility of the moving platform to 3-DOF. When the moving platform is parallel to the 

base, the two revolute axes of the universal joint of the centre passive limb, are parallel 

with the base frame’s x and y-axes. 
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Moving and global frames, namely; {P (uvw)} and {O (xyz)}, are attached to the 

moving and base platforms, respectively. 

2.1  Inverse Kinematic 

Inverse kinematic problem is stated as: given a desired pose of the EE find the actuator 

lengths. Considering Fig. 1, one can write the following, in which the columns of the 

matrix are the position vectors of the spherical joints:  

3 2 3 2 3C S S C S 0 0 0

0 C -S 0 0 0 0
2 2

-S C S C C

C C S C S S C S C S S C S
2 23 2 3 2 3

S C S C S
2 2

S C C S C S C C S
23 2 3 2 3

a a a

a a

c c cd d d

a a a a ad d d

a ad d d

a a a ad c d c

θ ψ θ ψ θ

ψ ψ

θ θ ψ θ ψ

θ ψ θ θ ψ θ ψ θ θ ψ θ ψ θ

ψ ψ ψ ψ ψ

θ θ ψ θ θ ψ θ ψ θ

 − −
    
    

= − +    
        
 

+ − + + − − +

−= − − −

− + + + + +

A

C S C C
2

a d cθ ψ θ ψ

 
 
 
 
 

− + + 
 

                          (1) 

where a is the moving platforms radius. Moreover, C and S stand for the Cos and Sin 

functions, respectively; c is the length of the passive prismatic actuator of the middle limb. 

The position vectors of the universal joints are grouped in the columns of matrix B as: 

3 2 3 2 3

0
2 2

0 0 0

b b b

b b

 − −
 
 

= − 
 
 
 

B
 

(2) 

in which b is the radius of the base platform. 

According to eqs. (1) and (2) the actuator lengths  can be calculated as the followings: 

(3) 
1

2 2 2
2

3 3 3 3

a b bd
q c d abC cdC C C Sθ θ ψ ψ θ= + + + − + −

2 2
2 2  

(4) 
2

2

1 1 1
( ) ( )

3 3 2 3 3 3

2 ( )
3

a b C S
q c d ab C S S C bd S

S
cdC C ac C S

ψ θ
θ ψ θ ψ ψ

θ
θ ψ θ ψ

= + + + − − + + +

+ + +

2 2
2 2

 

(5) 3

2 1 1 1
( ) ( )

3 3 2 3 3 3

2 ( )
3

a b C S
q c d ab C S S C bd S

S
cdC C ac C S

ψ θ
θ ψ θ ψ ψ

θ
θ ψ θ ψ

= + + + − + + + −

+ + −

2 2
2 2

 

2.2  Forward kinematic 

Forward kinematic is stated as: given a set of actuator lengths find the pose of the EE. 

In eqs.(3-5), we substitute now the equivalent expressions for Sψ and Cψ given below: 

2 tan( )
2

t
ψ

=  (6) 

2

2

2

2

1

t
S

t
ψ =

+
 (7) 



IIUM Engineering Journal, Vol. 12, No. 5, 2011: Special Issue -1 on Science and Ethics in Engineering 

Hosseini and Daniali 

 10

2

2

2

2

1

1

t
C

t
ψ

−
=

+  

(8) 

Similarly, equivalent expressions for Sθ and Cθ yields: 

1 tan( )
2

t
θ

=  (9) 

1

2

1

2

1

t
S

t
θ =

+
 

(10) 

2

1

2

1

1

1

t
C

t
θ

−
=

+  

(11) 

Substituting the values of Sψ, Cψ, Sθ and Cθ  from eqs.(6-11) into eqs.(3-5), upon 

simplifications leads to the following equations for the limbs; 

2

2 2t t 0 ;  for i 1, 2,3i i iM N L =+ + =      (12) 

In which the parameters for the three limbs are defined as: 

(13) 2 2

1 1 12

1

2

1 1

1 2
( )[( )( 2 )
1 3 3 3

4 2
( )( ) ( 2 )]

3 3 33

a b
M t c d q ab cd

t

bd a b
t c d q ab cd

= + + + − + + +
+

+ + + + − − −

2 2
2 2

2 2
2 2

 

(14) 1
0N =  

(15) 2 2

1 1 12

1

2

1 1

1 2
( )[( )( 2 )
1 3 3 3

-4 2
( )( ) ( 2 )]

3 3 33

a b
L t c d q ab cd

t

bd a b
t c d q ab cd

= + + + − + − +
+

+ + + + − − +

2 2
2 2

2 2
2 2

 

(16) 2 2

2 1 22

1

2

1 2

1 2
( )[( )( 2 )
1 3 3 3

2 2 1
( )( ) ( 2 )]

3 3 33

a b
M t c d q ab cd

t

ac bd a b
t c d q ab cd

= + + + − + + +
+

−
+ + + + − + −

2 2
2 2

2 2
2 2

 

(17) 2

2 1 12

1

1 2
( )[( )(2 2 ) ( )( ) (2 2 )]
1+ 3

ab
N t bd ac t bd ac

t
= − + + +  

(18) 2 2

2 1 22

1

2

1 2

1 1
( )[( )( 2 )
1 3 3 3

2 2 2
( )( ) ( 2 )]

3 3 33

a b
L t c d q ab cd

t

ac bd a b
t c d q ab cd

= + + + − − − +
+

+
+ + + + − − +

2 2
2 2

2 2
2 2

 

(19) 2 2

3 1 32

1

2

1 2

1 2
( )[( )( 2 )
1 3 3 3

2 2 1
( )( ) ( 2 )]

3 3 33

a b
M t c d q ab cd

t

ac bd a b
t c d q ab cd

= + + + − + + +
+

−
+ + + + − + −

2 2
2 2

2 2
2 2

 

(20) 2

3 1 12

1

1 -2
( )[( )( 2 2 ) ( )( ) ( 2 2 )]
1+ 3

ab
N t bd ac t bd ac

t
= − + + + − −  
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(21) 2 2

3 1 32

1

2

1 2

1 1
( )[( )( 2 )
1 3 3 3

2 2 2
( )( ) ( 2 )]

3 3 33

a b
L t c d q ab cd

t

ac bd a b
t c d q ab cd

= + + + − − − +
+

+
+ + + + − − +

2 2
2 2

2 2
2 2

 

Subtracting a ratio of equations (12) for the second and the third limbs leads to; 

(22) ( )2 2

3 2 2 2 2 2 2 3 2 3 2 3
( ) 0M M t N t L M M t N t L+ + − + + =  

(23) ( )2 2

3 2 2 2 2 2 2 3 2 3 2 3
( ) 0L M t N t L L M t N t L+ + − + + =  

Then, one can write: 

3 2 2 3 3 2 2 3 2

3 2 2 3 3 2 2 3

0

1 0

M N M N M L M L t

L M L M L N L N

− −     
=     − −     

 
(24) 

Eliminating  t2 from  the foregoing equation yields: 

( ) ( ) 2

3 2 2 3 3 2 2 3 3 2 2 3( ) 0M N M N L N L N M L M L− − + − =  (25) 

Recalling the above process for the first and the second limbs; the third and the first limbs 

lead to the following equations, respectively; 

( )( ) 2

2 1 1 2 2 1 1 2 2 1 1 2( ) 0M N M N L N L N M L M L− − + − =  (26) 

( )( ) 2

3 1 1 3 3 1 1 3 3 1 1 3( ) 0M N M N L N L N M L M L− − + − =
 

(27) 

Equations (25-27) are univariate polynomials of degree eight and can be solved for t1. The 

common roots of these equations are the solutions sought. 

3.   JACOBIAN AND SINGULARITY ANALYSIS 

3.1  Jacobian Matrix 

Generally, the EE twist array and  the actuators velocity vector are related as:  

x q=J x J q&&  
(28) 

in which Jx and Jq are the Jacobians; x&  is the three dimensional twist array; q&  is the three 

dimensional actuator velocity vector as:  

(29) [ ]
T

c ψ θ=x &&& &  

(30) [ ]
T

1 2 3
l l l=q & & &&

 

Taking the first time derivatives of the i
th

 limb vector close loop equation [5], yields;  

(31) ( )( )T T

li li p i i
l+ × + =n c n ω R a d &&  

Rewriting the above equation for the three limbs leads to: 
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(32) ( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

1 1 l1 1 l1

2 2 l2 2 l2

3 3 l3 3 l3

1

2

3

l z x y

l z x y

l z x y

n

n

n

c l

l

l

ψ

θ

+ × + ×

+ × + ×

+ × + ×

=

    
    
    

         

R a d n R a d n

R a d n R a d n

R a d n R a d n

&&

&&

&&

 

Therefore, this equation can be written as a more general form of eq.(28), in which: 

(33) ( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

1 1 l1 1 l1

2 2 l2 2 l2

3 3 l3 3 l3

l z x y

l z x y

l z x y

x

n

n

n

+ × + ×

+ × + ×

+ × + ×

 
 =
 
  

R a d n R a d n

R a d n R a d n

R a d n R a d n

J
 

(34) 
3 3q ×=J I 

Moreover, one can write eq.(28) as:   

(35) =x Jq&& 

In which 

(36) 1

x

−
=J J 

3.2  Singularity Analysis 

Algebraically, singularity deals with the rank deficiency of the associated Jacobian 

matrices. While geometrically, it is observed that the manipulator gains at least one 

additional uncontrollable DOF or loses one or a few DOF in singular points.  The 

singularities encountered in parallel manipulators can be divided into three main groups [6]. 

The first type of singularity occurs when the manipulator reaches the boundary of its 

workspace. In such a configuration, different branches of the inverse kinematic problem 

meet, det( qJ ) vanishes and one actuator does not produce any motion of the EE.  

At the second type of singularity, the EE can move in one or more directions and 

cannot resist against the force or torques in those directions while the actuators are locked. 

As opposed to the first one, this type of singularity occurs whenever different branches of 

the forward kinematic problem meet and det ( x
J ) vanishes.  

The third type of singularity occurs in the case that both types of the foregoing 

singularities occur, simultaneously [6]. 

Condition number of the Jacobian matrix is an index to measure the distance from 

singularity. It will increase in the vicinity of the singular points. The inverse of this index, 

namely Local Conditioning Index is commonly used for a measure of dexterity in robotic 

manipulators [7]. 

Tricept has a complex degree of freedom; therefore its condition number depends on 

the singular values of the dimensional in-homogeneous Jacobian. Here, we divide the 

Jacobian entries by units of length, thereby producing a new Jacobian that is dimensionally 

homogeneous. By multiplying the associated entries of the twist array to the same length, 
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we made this array homogeneous, as well. This implies some sort of tradeoff between 

position and orientation components of the twist array. 

3.3  Weighted Factor Method  

Dividing the second and the third columns of the Jacobian matrix of Eq. 28 by a 

length and multiply the second and the third coordinates of the twist vector to the same 

length [8] leads to the following dimensionally homogeneous relation: 

 

(37) 

 

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

1 11 1

1

1

2 22 2

2 2

3

3 33 3

3

yx

l z

yx

l z

yx

l z

n
l l

c l

n l l
l l

l l

n
l l

ψ

θ

+ ×+ ×

+ ×+ ×
=

+ ×+ ×

 
 
     
     
     
        
 
 
 

ll

ll

ll

R a d nR a d n

R a d nR a d n

R a d nR a d n

&&

&&

&&

 

 

4.    WORKSPACE ANALYSIS 

In this section, we study the workspace of Tricept manipulator based on combination 

of analytical method and numerical one.  

4.1  Algorithm 

In order to generate the workspace of Tricept parallel manipulator, we divide the 

three dimensional ψ-θ-Z workspace of the moving platform into a series of sub-

workspaces that are parallel to ψ-θ plane. Then a numerical searching method is adopted 

to determine the boundary of the sub-workspaces. Finally, the volume of workspace is 

calculated quantitatively. The searching method adopted here is similar to the one used in 

[9]. 

 

Fig. 2: Boundary points of a sub-workspace. 

In the particular sub-workspace at elevation Zi (within the workspace), to determine 

the boundary of the sub-workspace one may find trajectories formed by the end of polar 

vector ρi rotating about z axis from 0 to 2π, (see Fig. 2). When the boundary point in the 

direction of ρi is found as Pi (ρCosα, ρSinα, Zi); where ρi is the distance between Zi and Pi, 

α will be increased by ∆α, and the next point will be found, similarly. The determination of 

point Pi is based on the inverse kinematics of the Tricept. When searching the next 

boundary point Pi+1, we set the initial value of ρi+1 as ρi, and judge whether point Pi+1 is in 



IIUM Engineering Journal, Vol. 12, No. 5, 2011: Special Issue -1 on Science and Ethics in Engineering 

Hosseini and Daniali 

 14

the range of  workspace; if yes, then increase ρi+1, if not, then decrease ρi+1 until point Pi+1 

is on the boundary of the workspace. Once the boundary points in the sub-workspace are all 

searched out, Zi will be decreased by ∆Z, and the new searching will be performed again. 

Moreover, when α is increased by ∆α, the unit volume of the corresponding workspace can 

be expressed approximately as: 

2

2
i

dV Z
α

πρ
π

∆
= ∆

 

(38) 

Therefore, the volume of the workspace can be calculated as: 

21

2

max

i min

Z 2

i

Z Z 0

V Z

π

α

ρ α
= =

= ∆ ∆∑ ∑
 

(39) 

4.2  Geometric Constraints 

There are some geometric constraints in the design process. These constraints are the 

upper and lower limits of actuators, spherical and universal joints, links lengths and 

platforms radiuses. It is simple to calculate the cone angle of joints (ζ) by using the 

geometric relations between actuators vector and EE pose. The geometric constraints of 

the Tricept robot, is given in Table 1. 

Table 1: Geometric constraints of the Tricept manipulator. 

a 

(mm) 

b 

(mm) 

d 

(mm) 

ζ 

(deg) 

Actuator 

(mm) 

200-

300 

300-

500 

20-

200 

±60 400-750 

 

5. GA OPTIMIZATION 

One of the drawbacks of parallel manipulators is their limited workspace volume. 

Here, we apply Genetic algorithm for workspace volume optimization. 

Objective Function: 

For achieving the desired workspace with maximum volume the objective function 

defined as follow: 

(40) max( )V V
∗

=  

where V and V
∗  are workspace volumes with unit of mm.Rad

2
 and workspace volume 

without considering any constraints (like conditioning index) respectively which can be 

estimated by the foregoing algorithm.  

All the parameters which play a role on the workspace volume are considered as the 

design parameters. They are the moving and base platform radiuses (a and b) and the 

upper part of passive link length (d). 

(41) [ ]
T

, ,a b d=λ  
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Therefore, the problem can be stated as: 

(42) V
*
=Max(V(d, ra, rb)) 

      Subject to: 

 1- 200< a < 300, 300 < b < 500,   20 <d <200    

 2- 400<Actuator Length(L)<750,  -60< ζi<60 deg   

This optimization problem is solved by GA and leads to the data given in Table 2, in 

which the maximum workspace is 944.2176 (mm.Rad
2
). Moreover, the workspace is 

illustrated in Fig. 3. 

Table 2: Optimization results for maximum workspace. 

b 

(mm) 

a  

(mm) 
d 

(mm) 
V

*
 

(mm.Rad
2
) 

No. of 

Iteration 

200 300.062 20 944.2176 51 

 

 

Fig. 3: Maximum workspace. 

 Finally, we evaluate the distance from singularity by means of local conditioning 

index throughout the workspace of the Tricept. This index for the optimized design of the 

Table II is within 0.57 and 0.61. Moreover, the index for different elevations is depicted in 

Fig. 4. 
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Fig. 4: Local conditioning Index in different elevations. 

It is obvious from this figure that the design does not have any singular points within 

its workspace; therefore, it is well-conditioned.  

6.    CONCLUSIONS 

In this paper the workspace optimization of Tricept has been performed. This parallel 

manipulator has a complex degree of freedom and has leaded to dimensional in-

homogeneous Jacobian matrices. Therefore, we divided some entries of the Jacobian by 

units of length, thereby producing a new Jacobian that is dimensionally homogeneous. By 

multiplying the associated entries of the twist array to the same length, we made this array 

homogeneous as well. For the platform, the workspace was parameterized using some 

design parameters. Then, using GA method, the workspace was optimized subjects to 

some geometric constraints. Moreover, the evaluation of local conditioning index revealed 

the dexterity of the design.  
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