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ABSTRACT: In recent years, due to rapidly increasing computational power, 

computational methods have become the essential tools to conduct researches in various 

engineering fields. In parallel to the development of ultra high speed digital computers, 

computational fluid dynamics (CFD) has become the new third approach apart from 

theory and experiment in the philosophical study and development of fluid dynamics. 

Lattice Boltzmann Method (LBM) is an alternative method to conventional CFD. LBM 

is relatively new approach that uses simple microscopic models to simulate complicated 

microscopic behavior of transport phenomena. In this paper, fluid flow behaviors of 

steady incompressible flow inside lid driven square cavity are studied. Numerical 

calculations are conducted for different Reynolds numbers by using Lattice Boltzmann 

scheme.  The objective of the paper is to demonstrate the capability of this Lattice 

Boltzmann scheme for engineering applications particularly in fluid transport 

phenomena. 

ABSTRAK: Sejak kebelakangan ini, perkembangan pesat kuasa pengiraan komputer 

telah menjadikan kaedah pengiraan sebagai alat penting dalam penyelidikan bidang 

kejuruteraan. Selari dengan perkembangan komputer digital kelajuan tinggi, pengiraan 

bendalir dinamik bendalir (CFD) merupakan pendekatan baru yang ketiga selain 

daripada teori dan eksperimen dalam kajian falsafah dan pengiraan dinamik bendalir. 

Kaedah Kekisi Boltzmann (LBM) adalah satu kaedah alternatif berbanding CFD 

konvensional. LBM adalah pendekatan baru yang menggunakan model mikroskopik 

yang mudah untuk mensimulasikan tingkah laku mikroskopik dalam fenomena 

pengangkutan yang rumit. Dalam kertas ini, kelakuan aliran bendalir aliran tidak mampat 

di dalam rongga penutup empat persegi yang didorong telah dikaji. Pengiraan berangka 

telah dijalankan untuk nombor-nombor Reynolds yang berlainan dengan menggunakan 

kaedah Boltzmann kekisi. Objektif kertas ini adalah untuk menunjukkan keupayaan 

kaedah Boltzmann kekisi untuk aplikasi kejuruteraan terutamanya dalam fenomena 

pengangkutan bendalir. 
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1. INTRODUCTION  

Computational Fluid Dynamics (CFD) has been extensively used for the analysis of 

system pertaining to engineering field like fluid flows, heat transfer, chemical reaction, 

evaporation, condensation [1]. Over the years, fluid flow behaviors inside lid driven 

cavities have drawn many interested researchers and scientists. Applications of lid driven 
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cavities are in material processing, dynamics of lakes, metal casting, galvanizing and etc 

[2]. Numerous studies have been carried out on flow patterns inside a cavity. Excellent 

reviews on lid driven square cavity have been reported [3-5]. On the other hand, the 

numerical simulation of driven cavity flow at high range of Reynolds number using high 

grid numbers had been conducted in [6]. These researchers used the conventional CFD 

method which is by solving the 2-D Navier Stokes equation. 

In recent years, there has been a rapid progress in developing the lattice Boltzmann 

method (LBM) as an efficient alternative way to the conventional CFD methods. The main 

advantage of LBM is its flexibility in terms of programming and better accuracy in dealing 

with complicated boundary of geometries [7]. In addition to that, the LBM is also better 

than the classical CFD in the range of small to moderate Reynolds numbers if dealing with 

flows in complex geometries [8]. 

2. LATTICE BOLTZMANN METHOD 

The basic idea of Boltzmann work is that a gas is composed of interacting particles that 
can be explained by classical mechanics [9]. The mechanics can be very simple where it 
contains streaming in space and billiard-like collisions interactions [9]. In addition to that, 
since there are many particles involves, a statistical treatment is needed and is more 
suitable.  

The statistical treatment of a system can be represented in terms of distribution 
function. This distribution function� ��, �, ��	� 	� is the number of particles which its 
positions and velocities are dx and dc at time t respectively. Each particle would move from 
x to x + c∆t if there is no collision occurs.  Each particle velocity would change from c + 
a∆t  in which a is the acceleration due to external forces on a particle at x with a velocity of 
c. No collision means there is conservation of molecules which can be represented in 
equations of [10]: 

��
 � �∆�, � � �∆�, � � ∆��	
	� � ��
, �, ��	
	� � 0 (1) 

However, if there is collision occurs, the equation represent this particular case is as 
follow: 

��
 � �∆�, � � �∆�, � � ∆��	
	� � ��
, �, ��	
	�            �  Ω  ���	
	�	�                                                                            �2�   
 

where f(x, c, t) is the single particle distribution function with discrete velocity of c and 
Ω(f)dxdcdt  is the Boltzmann collision operator. It is from this equation that Bhatnagar-
Gross-Krook (BGK) collision model was developed and further derived to become BGK - 
LBM equation. 

In general, the discretised version of BGK LBM equation can be written as follow: 

���
 �  ��∆�, � � ∆�� � ���
, �� � �∆� ��� � ����
�� �               �3� 

Where ����  is equilibrium distribution function   and �� is the time relaxation.  

The Lattice Boltzmann model with BGK collision operator or BGK model in short, is 
the classical LB fluid model. This model is most often used to solve the incompressible 
Navier-Stokes equations. 
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3. RESULTS AND DISCUSSION 

The simulations of flow of lid driven square cavity were conducted in different range 

of Reynolds (Re) numbers. The top wall velocity, U was maintained at 0.1 lattice unit per 

second (lu/s) while the velocity of other three walls which is right, left and below was set 

to 0 lu/s. The fluid temperature is maintained to be constant (isothermal). The Re numbers 

were varied from 7500, 8000, 9000 and 12500. The graph of velocity profile at mid height 

of each x and y axis were plotted for the correspond Re numbers as shown in Fig.1 to Fig. 

4  The graph obtained in Fig. 1 for Re number of 7500 were compared with the numerical 

results in [3]. Good agreements between LBM and in [3] have been found for Re number 

equal to 7500.   

 

Fig. 1: Velocity profile at mid-height (x-velocity,Ux and y-velocity,Uy) of cavity for Re 

number 7500. Line-LBM and symbol- Ghia et al. [3] 

 

 

Fig. 2: Velocity profile at mid-height (x-velocity, Ux and y-velocity,Uy) of cavity for Re 

number 8000. 
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Fig. 3: Velocity profile at mid-height (x-velocity, Ux and y- velocity,Uy) of cavity for Re 

number 9000. 

 

Fig. 4: Velocity profile at mid-height (x-velocity and y-velocity) of cavity for Re number 

12500. 

Apart from the numerical results, the streamline patterns were also shown for each Re 

number . These patterns are plotted when steady state solution is achieved.  The streamline 

patterns are shown as in Fig. 5 to Fig. 8.   The figures depict that there is addition in terms 

of the number of secondary vortex when the Re number is increased.  As shown in the Fig. 

8, the number of secondary vortex is increase from 3 to 4 when the Reynolds number is 

increased from 9000 to 12500. 
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                      Fig. 5: Streamline patterns for Re number of 7500. 

Fig. 6: Streamlines patterns for Re number of 8000. 

 

 

 

 

 

 

 

 

Fig. 7: Streamline patterns for Re number of  9000. 

 

Fig. 8: Streamline patterns for Re number of 12500. 
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On the other hand, the centre of the primary vortex together with results in [3] is 

shown in Table 1.   

 

Table 1: Location of primary vortex for shear driven square cavity. 

Re Number 7500 8000 9000 12500 

Ghia et al. [3] (0.5117, 

0.5322) 

-  - 

Hou et al. 

[12] 

(0.5176, 

0.5333) 

- - - 

LBM (0.5150, 

0.5325) 

(0.5075, 

0.5325) 

(0.5150, 

0.5300) 

(0.5133, 

0.5267) 

 

The location of the primary vortex obtained by using LBM is then plotted on the 

graph as shown in Fig. 9.  From the graph, it is noticed that when the Re number is higher, 

the centre of the primary vortex moves downwards to the left of the cavity. 

 

 

 

 

 

 

 

 

Fig. 9: Graph of the location of primary vortex for respective Re numbers. 

4. CONCLUSION 

The capability of LBM to simulate flow in shear driven square cavity has been 

demonstrated successfully.  Numerical results that are obtained for Re number of 7500 are 

in good agreements with the references.   

Apart from that, the number of secondary vortex is affected by the increase of 

Reynolds numbers for shear driven cavity. In addition to that, the location of the centre of 

the primary vortex in driven cavity flow is also affected by the Reynolds numbers. 
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