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ABSTRACT:   The rapid advancement in pattern recognition via the deep learning method 

has made it possible to develop an autonomous medical image classification system. This 

system has proven robust and accurate in classifying most pathological features found in 

a medical image, such as airspace opacity, mass, and broken bone. Conventionally, this 

system takes routine medical images with minimum pre-processing as the model's input; 

in this research, we investigate if saliency maps can be an alternative model input. Recent 

research has shown that saliency maps' application increases deep learning model 

performance in image classification, object localization, and segmentation. However, 

conventional bottom-up saliency map algorithms regularly failed to localize salient or 

pathological anomalies in medical images. This failure is because most medical images 

are homogenous, lacking color, and contrast variant. Therefore, we also introduce the 

Xenafas algorithm in this paper. The algorithm creates a new kind of anomalous saliency 

map called the Intensity Probability Mapping and Weighted Intensity Probability 

Mapping. We tested the proposed saliency maps on five deep learning models based on 

common convolutional neural network architecture. The result of this experiment showed 

that using the proposed saliency map over regular radiograph chest images increases the 

sensitivity of most models in identifying images with air space opacities. Using the Grad-

CAM algorithm, we showed how the proposed saliency map shifted the model attention 

to the relevant region in chest radiograph images. While in the qualitative study, it was 

found that the proposed saliency map regularly highlights anomalous features, including 

foreign objects and cardiomegaly. However, it is inconsistent in highlighting masses and 

nodules.  

ABSTRAK: Perkembangan pesat sistem pengecaman corak menggunakan kaedah 

pembelajaran mendalam membolehkan penghasilan sistem klasifikasi gambar perubatan 

secara automatik. Sistem ini berupaya menilai secara tepat jika terdapat tanda-tanda 

patologi di dalam gambar perubatan seperti kelegapan ruang udara, jisim dan tulang patah. 

Kebiasaannya, sistem ini akan mengambil gambar perubatan dengan pra-pemprosesan 

minimum sebagai input. Kajian ini adalah tentang potensi peta salien dapat dijadikan 

sebagai model input alternatif. Ini kerana kajian terkini telah menunjukkan penggunaan 

peta salien dapat meningkatkan prestasi model pembelajaran mendalam dalam 

pengklasifikasian gambar, pengesanan objek, dan segmentasi gambar. Walau 

bagaimanapun, sistem konvensional algoritma peta salien jenis bawah-ke-atas 

kebiasaannya gagal  mengesan salien atau anomali patologi dalam gambar-gambar 
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perubatan. Kegagalan ini disebabkan oleh sifat gambar perubatan yang homogen, kurang 

variasi warna dan kontras. Oleh itu, kajian ini memperkenalkan algoritma Xenafas yang 

menghasilkan dua jenis pemetaan saliensi anomali iaitu Pemetaan Kebarangkalian 

Keamatan dan Pemetaan Kebarangkalian Keamatan Pemberat. Kajian dibuat pada peta 

salien yang dicadangkan iaitu pada lima model pembelajaran mendalam berdasarkan seni 

bina rangkaian neural konvolusi yang sama. Dapatan kajian menunjukkan dengan 

menggunakan peta salien atas gambar-gambar radiografi dada tetap membantu 

kesensitifan kebanyakan model dalam mengidentifikasi gambar-gambar dengan 

kelegapan ruang udara. Dengan menggunakan algoritma Grad-CAM, peta salien yang 

dicadangkan ini mampu mengalih fokus model kepada kawasan yang relevan kepada 

gambar radiografi dada. Sementara itu, kajian kualitatif ini juga menunjukkan algoritma 

yang dicadangkan mampu memberi ciri anomali, termasuk objek asing dan kardiomegali. 

Walau bagaimanapun, ianya tidak konsisten dalam menjelaskan berat dan nodul. 

KEYWORDS: saliency mapping; chest radiograph; convolutional neural network 

1. INTRODUCTION  

The convolutional neural network (CNN) has become the de-facto choice for image 

classification and object detection. It has shown that the network model can achieve human-

level accuracy, including for medical images. Nevertheless, researchers are still finding 

ways to improve the classification performance with novel ideas. The majority of this 

research focuses on developing ever more complex and deep architecture. In this paper, we 

test the idea of changing the input typing rather than the model architecture. Instead of using 

a regular medical image, the saliency map is proposed to be the alternative input.  

1.1  Introduction to Saliency Map  

Itti et al. [1] introduced the concept of the saliency map in 1998. A saliency map is a 

numerical map that localizes an object (or objects) in an image that is deemed interesting 

(salient). In other words, the map emphasizes relevant features in an image while at the same 

time suppressing irrelevant features. Saliency maps have been employed in many tasks, 

including image classification, object detection, and image segmentation [2,3].  

Methods for creating a salient map can be divided into the top-down and bottom-up 

approaches [4]. In the bottom-up approaches, the salient map is constructed based solely on 

the image's feature. Features such as color mapping, contrast, edges, and objection 

placement are used to localize the image's salient region. Famous bottom-up algorithms are 

Binary Normed Gradient for Objectness [5], the Fine-Grained [6], and Spectral Residual 

[7]. However, [8] stated that medical images produced by conventional modalities such as 

CXR, computer tomography (CT) scan, and ultrasound are mostly homogenous and possess 

very few color variants. In situations like this, most conventional bottom-up algorithms will 

fail to localize any salient object in the image; this is shown in Fig. 4. 

Contradicting the previous method, the top-down approach produces a salience map 

based on the task given. The algorithm takes external cues from a human or model feedback 

to construct the final salience map. This method is fast becoming the mainstream solution, 

especially for medical images, as it can produce precise salient region boundaries even in 

the presence of shades or reflections [9]. However, since the techniques are based on a 

supervised CNN model, from which it naturally inherits CNN dependencies. First, it 

requires a large number of annotated samples for training purposes. Secondly, its 

development and deployment require access to accelerated hardware. These two 

requirements are an obstacle for the practical deployment of such technology in the medical 
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field, especially in Malaysia. Currently, Malaysia lacks any open medical image dataset, 

and very few hospitals are equipped with, or have access to, accelerated hardware. 

1.2  Anomalous Saliency Mapping  

In this paper, we introduce a new algorithm called the Xenafas algorithm that produces 

two novel anomalous saliency maps call Intensity Probability Map (IPM) and Weighted 

Intensity Probability Map (WPM). Different from the bottom-approach which only takes 

internal image cues, our approach takes cues from the probability mapping of a pixel's 

intensity relative to a cluster of similar images. However, it also does not require annotated 

samples or accelerated hardware to create the saliency map, which is practical in the context 

of Malaysia's clinical settings. Therefore, the algorithm can be considered as a middle 

ground between the bottom-up and top-down approach. We test the algorithm on a chest 

radiograph (CXR) dataset to see if the algorithm can create a salience region by highlighting 

pathological features such as air space opacities, masses, and foreign objects.  

2.   LITERATURE REVIEW  

For readers who want more information on the saliency map, ref [8] provides an 

extensive review of the subject matter. This paper's literature review will focus on the 

application of the saliency map in medical image analysis.  

The application of saliency in medical images can be separated into two categories, 

depending on when it is used. The majority of research only applied it post-training and 

solely for model interpretations; it is not actively involved in model training. For example, 

in [10], the saliency map produced by the class activation mappings (CAM) [11] is used to 

validate the feature selected by the CheXNeXt model for its classifications. Similarly, in 

[12], a saliency map is created via the guided back-propagation method [13], which is then 

used to provide interpretability for model classification on breast cancer image 

classifications. Research done by [14-16] also shows similar traits. However, it is vital to 

mention the finding by [17], in which the author demonstrated that most algorithms used to 

create this saliency map are inconsistent when repeated. Among all algorithms, the Grad-

CAM [18] algorithm shows the most consistency.  Thus, the trustworthiness of using a 

saliency map to validate clinical CNN models is questionable. 

The second type of saliency map research actively uses it in the model training. For 

example, in [19], the saliency map in the form of an attention map reduces a model false-

positive rate. Similar to a saliency map, the attention map produced by the Attention Gate 

(AG) algorithm suppresses irrelevant regions in the image.  In [20], localization of 

pulmonary lesions in CXR images is achieved by extracting a saliency map from a CNN 

model.  Likewise, in [21], a saliency map is generated and used to detect polyps in capsule 

endoscopy. Various bottom-up saliency algorithms are used for segmenting skin cancer in 

[22,23].  

To the best of the authors' knowledge, there is yet a paper that examines the effect of 

using a saliency map as input for chest radiograph classification. Therefore, in this paper, 

we tested the effect of using the proposed saliency map, IPM, and WPM, which will enhance 

the classification performance of the CNN model. In addition, we also test if the proposed 

saliency map successfully highlights all pathological features in a CXR image. For the 

interested reader, a review on the classification of CXR by supervised CNN models can be 

found from [24]. 
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3.   METHODOLOGY 

3.1  The Xenafas Algorithm 

We proposed the Xenafas method, an algorithm that indicates anomaly regions' location 

on a CXR image, based on the likelihood of a pixel's intensity (opacities) at a given location. 

The method starts with creating a control dataset. Images for this dataset must be cherry-

picked; avoiding images containing any form of anomalies. Examples of anomalies include 

but are not limited to; any pathology, foreign body, extreme variation such as dextrocardia, 

rotated film, and patients in non-standard body positions. 

After the control dataset has been created, the images are clustered into several groups 

using the K-Means algorithm. This step is needed to address the variation in patient body 

shape, image quality between x-ray machines, and the patient's body's orientation when the 

x-ray image is taken. The number of clusters, K, depends on the homogeneity of the images 

in the dataset. A good homogenous dataset will use a K value of 1–3, while a heterogeneous 

dataset will use a value between 7–10. Next, the 2D pixel intensity distribution or ProbMat 

is created as shown in Algorithm 1. 

 

Fig. 1: The pseudocode for producing the ProbMat. 

There are several ways to create a non-parametric probability function; one of the most 

popular is to use the Kernel Density Estimation method (KDE). KDE is easy to implement; 

however, computationally intensive when it is scaled to sample high-resolution images. A 

dataset with images with 256 by 256 resolution will need 65 536 KDE modeling to create 

all the necessary ProbMat. This requirement will quickly exhaust the memory resource of a 

computer. Additionally, there is no clear guideline on determining the appropriate 

bandwidth value of a KDE model.  

We proposed another method as an alternative to KDE. In this method, we first create 

a histogram of pixel intensity for all CXR images in the subcluster K, at a specific value of 

x and y. From the histogram, a discrete probability function can be obtained. A continuous 

function for all possible intensity values is approximate by combining the discrete 

probability function with cubic spline interpolation. The Savitzky-Golay filter was then 

applied to smooth the probability distribution function further. Using this continuous 

probability function, it is now possible to create a matrix (ProbMat) representing the 

probability of all intensity values at any given location. Pseudocode shown Fig. 2 is used to 

create the anomalous saliency map. In this part, the ProbMat is used to produce the Intensity 
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Probability Map (IPM) and Weighted Intensity Probability Map (WPM) for all CXR 

images. 

 

Fig. 2: Pseudocode to produce IPM and WPM saliency map. 

The WPM function is given by Eq. (1), 

𝑊(𝑥, 𝑦) = 𝑃(𝑖𝑥,𝑦)𝑖𝑥,𝑦 (1) 

The weighted pixel intensity, 𝑊 at position 𝑥, 𝑦 is equal to the product of its intensity, 

𝑖, and the intensity likelihood, 𝑃(), at the same locations. In WPM, the original pixel 

intensity acts as a weight for the likelihood. Thus, only anomaly regions with high opacities 

will be shown in WPM; lucent anomalies will be suppressed. In visualizing IPM and WPM 

images, pixels with lower likelihood will have a higher intensity (appear brighter) than 

pixels with high likelihood. Thus, a region that is marked brightly (highlighted) is a region 

that the algorithm considers to have anomaly features. 

One of the IPM and WPM images' fundamental weaknesses is that it suppresses 

anatomical landmarks. Without anatomical landmarks, it is difficult to determine the 

location of an anomalous region relative to an organ. To solve this issue, we added 

IPM/WPM heatmap as a layer on top of the corresponding images. Though, only regions 

that exceed the Otsu threshold [25] are incorporated into the images. An example of IPM, 

WPM, Infused-IPM (IIPM) and Infused-WPM (IWPM) is shown in Fig. 5. For comparison 

purpose, Fig. 4 shows the output of conventional bottom-up saliency mapping algorithms 

called Fine-Grained and Spectral Residual. The implementation of both these algorithms is 

taken from the OpenCV.  

3.2  Classification Method  

This paper aims to test whether or not replacing CXR images with IPM and WPM will 

improve CNN's classification performance. Thus, to ensure any performance changes are 

due to the input type and not the CNN architectures, only familiar deep CNN models are 

used. Figure 3 shows the network architecture used, with the base model being MobileNet, 

DenseNet121, ResNet50, VGG19 and Xception [26-30]. The implementation of base model 

network architecture is taken from TensorFlow (Ver. 2) library and with the pre-trained 

weight from ImageNet  [31].   
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   Fig. 3: Classification network architecture. 

All models are trained with 100 epochs; however, an early stop is executed if there is 

no improvement in the loss value after ten epochs. All models were trained and tested on 

the Google Cloud platforms. 

We have chosen the regular classification metric performance for model validation: 

precision, sensitivity, receiver operating characteristic curve (ROC-AUC), and the area 

under the precision versus sensitivity curve (PR-AUC).  

3.3  Dataset 

The dataset that is being used in this research is the Google-NIH dataset [32]. Initially, 

NIH provides the images while the labels are provided by Google [33]. It is important to 

note that only labels for the test and validation dataset are provided from the source. To 

create the training dataset for this study, we split the original validation dataset into a new 

training and validation dataset with a ratio of 0.3. All datasets are imbalanced datasets.  

3.4  Qualitative Validations  

To test the clinical relevance of the proposed algorithm, several normal and anomalous 

CXR images were selected, and the resulting IPM and WPM were examined qualitatively 

by a certified radiologist. Anomalous CXR that was chosen includes images of a rotated 

film, foreign body, cardiomegaly, and masses. For model interpretation, the Grad-CAM [18] 

algorithm is used to visualize which region of the CXR is relevant to the model when making 

the class classification.  

4.   RESULTS AND DISCUSSION  

4.1  Classification Result 

Table 1 shows several classification metrics obtained by various models and input-data 

types to classify the test dataset for air space opacity. While Table 2 shows similar metrics 

for the classification of CXR images with masses/nodules. Entries with the highest score for 

a particular metric is bolded.   

The result obtained is not particularly easy to decipher. The highest score in PR-AUC, 

accuracy, and precision is obtained by ResNet50+Image, ResNet50+IIPM, and 

ResNet50+IWMP, respectively. Xception+Image and VGG19+Image do have a higher 

precision score, however, both results were rejected due to their sensitivity score being less 

than 0.5. This means the models falsely label the majority of positive samples. The model 

with the highest sensitivity score is VGG199+WPM, with a score of 0.930. However, the 

model precision is quite low, only 0.672, thus the next model, DenseNet121+IWPM, will 

be a better choice, having obtained 0.893 in sensitivity and 0.775 in precision. Meanwhile, 

DenseNet121+Image obtained the highest ROC-AUC score, 0.877. 
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Table 1: Classification performance of CNN models with different base models and 

input data type for the airspace opacity dataset. ROC, PR, ACC, Pre, Sen stand for 

ROC-AUC, Precision-Recall area under the curve, accuracy, precision, and sensitivity 

respectively. %∆ represents the percentage difference in score compared to the model 

with image as input 

Input 

Type 

ROC-

AUC 

%∆ PR-AUC %∆ Accuracy %∆ Precision %∆ Sensitivity %∆ 

MobileNetV2 

Image 0.844  0.883  0.770  0.814  0.781  

IPM 0.824 -2.4 0.865 -2.1 0.754 -2.1 0.787 -3.3 0.789 1.0 

WPM 0.801 -5.2 0.835 -5.4 0.670 -13.0 0.851 4.4 0.522 
-

33.2 

IIPM 0.846 0.2 0.879 -0.5 0.767 -0.5 0.821 0.8 0.763 -2.3 

IWPM 0.841 -0.3 0.873 -1.2 0.772 0.3 0.785 -3.6 0.834 6.9 

DenseNet121 

Image 0.877  0.903  0.776  0.878  0.712  

IPM 0.836 -4.7 0.874 -3.3 0.711 -8.4 0.878 -0.1 0.581 -18.3 

WPM 0.820 -6.5 0.860 -4.8 0.736 -5.2 0.795 -9.5 0.733 3.0 

IIPM 0.873 -0.4 0.905 0.2 0.763 -1.7 0.877 -0.1 0.686 -3.6 

IWPM 0.874 -0.3 0.904 0.1 0.788 1.5 0.775 
-

11.8 
0.893 25.4 

Xception 

Image 0.856  0.890  0.683  0.921  0.495  

IPM 0.809 -5.6 0.851 -4.4 0.736 7.8 0.757 
-

17.9 
0.803 62.1 

WPM 0.797 -6.9 0.836 -6.1 0.729 6.7 0.797 
-

13.5 
0.714 44.1 

IIPM 0.835 -2.5 0.871 -2.1 0.732 7.2 0.856 -7.1 0.646 30.4 

IWPM 0.841 -1.8 0.874 -1.8 0.723 5.7 0.876 -4.9 0.606 22.4 

ResNet50 

Image 0.873  0.907  0.784  0.881  0.725  

IPM 0.838 -4.0 0.879 -3.1 0.757 -3.5 0.831 -5.7 0.728 0.4 

WPM 0.829 -5.0 0.874 -3.7 0.759 -3.2 0.802 -9.0 0.775 6.9 

IIPM 0.870 -0.4 0.906 -0.2 0.790 0.6 0.872 -1.0 0.745 2.8 

IWPM 0.867 -0.6 0.905 -0.3 0.743 -5.3 0.904 2.6 0.621 -14.3 

VGG19 

Image 0.840  0.876  0.654  0.910  0.447  

IPM 0.805 -4.2 0.860 -1.8 0.761 16.4 0.769 
-

15.5 
0.841 88.2 

WPM 0.796 -5.3 0.843 -3.8 0.697 6.5 0.672 
-

26.2 
0.930 

108.

3 

IIPM 0.858 2.2 0.894 2.1 0.760 16.1 0.875 -3.9 0.683 52.9 

IWPM 0.845 0.6 0.887 1.3 0.760 16.1 0.852 -6.3 0.707 58.4 

Next, we analyze if using the proposed anomalous saliency mapping as input will result 

in a better classifier for the airspace opacity dataset. We are particularly interested if such 

change in input can boost the performance of shallower CNN models (MobileNetV2 and 

DenseNet121) to comparable performance of deeper CNN models (ResNet50, VGG19 and 

Xception). What is evident from the result, using the alternative data types as input enhances 

the model's sensitivity. For example, VGG19+WPM, which obtained the highest sensitivity, 

obtained a 108.3% improvement compared to VGG19+IMG. This sensitivity improvement 

is more apparent in deep CNN models (ResNet50, VGG19, and Xception) than shallower 

CNN models (MobileNetV2 and DenseNet121).  
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As one might expect, any improvement in sensitivity tends to reduce model precision. 

Nevertheless, in most results, the degree of precision reduction is less than the degree of 

sensitivity gain. For example, the model Xception+IIPM obtained an increase of 30.4% in 

sensitivity while only reducing its precision by 7.1% compared to Xception+Image.  

The answer to which CNN model and input data type perform the best, depends on the 

purpose of the model. For screening purposes, then DenseNet121+IWPM will be the 

recommended model as it obtained the second-best sensitivity score while maintaining a 

reliable precision score. For precise clinical classification, then ResNet50+IWMP is 

recommended.  

Table 2: Classification performance of CNN models with different base models  

and input data type for the mass/nodule dataset. ROC, PR, ACC, Pre, Sen  

stand for ROC-AUC, Precision-Recall area under the curve, accuracy, precision,  

and sensitivity respectively. %∆ represents the percentage difference in score  

compared to the model with image as input 

Input Type ROC-AUC %∆ PR-AUC %∆ Accuracy %∆ Precision %∆ Sensitivity %∆ 

MobileNetV2 

Image 0.588  0.194  0.709  0.209  0.336  

IPM 0.568 -3.4 0.188 -3.2 0.729 2.8 0.201 -4.2 0.268 -20.2 

WPM 0.588 0.0 0.204 5.2 0.755 6.5 0.206 -1.4 0.220 -34.3 

IIPM 0.577 -1.7 0.182 -6.4 0.805 13.4 0.194 -7.1 0.095 -71.7 

IWPM 0.573 -2.4 0.192 -1.0 0.659 -7.2 0.188 -10.2 0.383 14.1 

DenseNet121 

Image 0.606  0.199  0.739  0.228  0.308  

IPM 0.587 -3.1 0.198 -0.6 0.716 -3.1 0.205 -10.1 0.308 0.0 

WPM 0.607 0.3 0.209 4.9 0.541 -26.8 0.197 -13.8 0.664 115.4 

IIPM 0.619 2.2 0.215 7.9 0.669 -9.4 0.222 -2.8 0.478 54.9 

IWPM 0.617 1.9 0.216 8.2 0.731 -1.0 0.241 5.7 0.366 18.7 

Xception 

Image 0.637  0.231  0.702  0.227  0.410  

IPM 0.587 -7.8 0.197 -14.7 0.633 -9.8 0.196 -13.8 0.464 13.2 

WPM 0.575 -9.8 0.200 -13.5 0.611 -13.0 0.177 -22.0 0.437 6.6 

IIPM 0.602 -5.5 0.206 -10.6 0.737 5.0 0.213 -6.4 0.278 -32.2 

IWPM 0.609 -4.5 0.210 -9.2 0.570 -18.7 0.192 -15.5 0.580 41.3 

ResNet50 

Image 0.643  0.242  0.689  0.225  0.437  

IPM 0.644 0.2 0.268 11.0 0.631 -8.4 0.222 -1.3 0.580 32.6 

WPM 0.619 -3.7 0.253 4.5 0.556 -19.3 0.199 -11.4 0.647 48.1 

IIPM 0.614 -4.5 0.210 -13.0 0.745 8.1 0.228 1.2 0.292 -33.3 

IWPM 0.612 -4.7 0.222 -7.9 0.820 19.0 0.299 33.2 0.149 -65.9 

VGG19 

Image 0.619  0.257  0.741  0.230  0.308  

IPM 0.623 0.6 0.279 8.5 0.545 -26.4 0.195 -15.3 0.647 109.9 

WPM 0.561 -9.3 0.194 -24.6 0.733 -1.1 0.206 -10.7 0.271 -12.1 

IIPM 0.620 0.1 0.245 -4.8 0.743 0.2 0.244 5.9 0.339 9.9 

IWPM 0.628 1.4 0.260 1.0 0.752 1.5 0.248 7.7 0.319 3.3 

 

It is worth noting that, since this dataset is imbalanced, the PR-AUC score is more important 

than the ROC-AUC score. DenseNet121+IWPM also obtains a PR-AUC score of 0.904, a 
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mere 0.003 less than the highest score, which is 0.907 by ResNet50+Image. In addition to 

obtaining a reliable classification score, it also has the advantage of requiring fewer 

computing resources than ResNet50, VGG19, and Xception. Thus, it is more practical to be 

deployed in Malaysian hospitals.  

In Table 2, results show that all models failed to achieve acceptable classification 

performance for the mass/nodule testing-dataset. No model obtained a precision score of 

more than 0.5, meaning the majority of positive classifications were actually false. It is 

worth pointing out that all sensitivity scores for IMG input were lower than 0.5, thus all 

model missed the majority of the mass/nodule samples. Only DenseNet121+WPM, 

ResNet50+ WPM/IPM and VGG19+IPM manage to achieve a sensitivity score above 0.5.  

4.2  Qualitative Assessment 

Figure 4 shows the example of a saliency map produced by the Fine Grained and 

Spectral Residual algorithm, a conventional bottom-up algorithm. As shown in the figure, 

the Fine Grained failed to emphasize or suppress any feature in the image. Conversely, the 

Spectral Residual suppressed almost all featured, making it impossible to extract any 

meaningful information from its saliency map. Aligned with what was mentioned in [9], the 

conventional bottom-up saliency map algorithm cannot produce meaningful mapping for 

CXR images.  

 

Fig. 4: The saliency map of a CXR image (a) produced by the Fine Grained, 

(b) and Spectral Residual (c) algorithms.  

Fig. 5: A comparison between the original image and the corresponding IPM, WPM, IIPM 

and IWPM for a patient in a normal (a-e) and rotated (f-j) position. 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

(a) Image (b) IPM (c) WPM (d) IIPM (e) IWPM 

(f) Image (g) IPM (h) WPM (i) IIPM (j) IWPM 
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Figure 5(a) shows CXR images with no visible abnormalities; the resulting IPM and 

WPM are shown the Fig. 5(b) and 5(c), respectively. There is no apparent region highlighted 

for the WPM image, implying that the algorithm does not identify any anomaly in the 

original CXR image. However, the perihilar region is incorrectly highlighted in the IPM 

image; this may suggest that the IPM may be over-sensitive in highlighting anomalies in 

CXR images. 

Next, we examine how the algorithm processed CXR images taken for an incorrectly 

positioned patient, or for a rotated x-ray film. For example, in Fig. 5(d), the patient's trachea 

is not located in the midline, suggesting that the patient may be rotated relative to the film. 

This orientation gives the appearance that the right lung is more lucent than the left. In the 

produced IPM image, the lucent region is highlighted, whereas WPM does not highlight this 

feature as WPM suppresses lucent anomalies. Whether or not the cause of the right lung 

lucency is significant is still an anomaly from the imaging perspective. Thus, the algorithm 

should highlight this anomaly as in the IPM image and then proceed to validate it by a 

radiologist. 

Another feature that indicates that the patient is in an abnormal position is the presence 

of teeth in the CXR image. The anomaly is highlighted in the IPM and more evidently in 

the WPM image. Teeth usually are not presented in a CXR, thus it is a form of anomaly that 

should be highlighted by a UAS algorithm. However, the algorithm incorrectly highlighted 

the patient breasts; this error may have been caused by the lack of images containing breasts 

in the control dataset. 

 

Fig. 6: Chest radiograph with foreign body, (a) and (b).  

The resulting WPM images (c) and (d) clearly show the foreign bodies, arrow (1)-(4). 

Figure 6(a) and 6(b) show CXR with foreign bodies, and the resulting WPM images are 

shown in Fig. 6(c) and (d). In both WPM images, the foreign bodies (arrows) are highlighted 

clearly and are more apparent than in the original CXR images. The opacity of biological 
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matter around the foreign body is suppressed, making it appear lucent. With this result, it 

can be assumed that WPM images may help in identifying foreign objects in CXR.   

Next, the algorithm capabilities in highlighting pathological changes are demonstrated. 

Figure 7(a) shows a CXR with cardiomegaly, and it is highlighted clearly in both IPM, Fig. 

7(b) and WPM Fig. 7(c) image. On the other hand, Fig. 7(d) shows CXR with a homogenous 

opacity at the right lower lung zone that does not obscure the cardiac border. This feature is 

not highlighted in both IPM, Fig. 7(e) and WPM, Fig. 7(f) images. 

 

Fig. 7: The cardiomegaly feature in (a) is clearly highlighted  

in the WPM (b) and IPM (c) image. However the generalized opacity  

feature in (d) is absent in the IPM (e) and WPM (f) images. 

Additionally, the algorithm also frequently failed to highlight opacity due to mass and 

nodules. The single nodule in Fig. 8(a) was not highlighted in the resulting WPM image, 

Fig. 8(d). The same can also be said for the multiple nodule-like opacities at bilateral mid 

and lower lung zones, as shown in Fig. 8(b). Only some of the lung masses are highlighted 

in resulting WPM images, Fig. 8(e). An example of a correctly highlighted lung mass is 

shown in Fig. 8(c) and 8(f). 

4.3  Grad-CAM Results 

To meaningfully deploy a developed model in clinical use, it must show some degree 

of interpretability and the classification must be validated based on some biological markers. 

For this reason, we use the Grad-CAM, [18], to visualize which region on the input data is 

emphasized. Figure 9(a) shows an example of CXR having airspace opacifications. Figure 

9(b)-(f) shows the output of the Grad-CAM algorithm for DenseNet121 models that were 

trained with different input data types. The only models that were trained using the WPM 

and IIPM as input were correctly labeled the sample. 
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Fig. 8: Most of the lung nodules and masses in (a) and (b)  

failed to be highlighted in the resulting WPM images, (d) and (e).  

Only lung masses in (c) were successfully highlighted in (f). 

 

Fig. 9: Output of the Grad-CAM algorithm for air space opacification dataset.  

Regions that are marked red are regions that the DenseNet-121 deems important. 

An obvious pattern that emerges in Fig. 9 is that models that received the original CXR 

image (image, IIPM, and IWPM) as input tend to mark the lower-left diagram. On the other 

hand, the model that takes IPM and WPM tends to focus more on the lung and shoulder 

region. It is not exactly certain why the DenseNet121-IPM model incorrectly labeled the 
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image even though it correctly emphasized the lung region. One reason that can be attributed 

is the model emphasized the right lung more than the left lung. Both models that correctly 

labeled the image, DenseNet121-WPM, and DenseNet121-IIPM, emphasize the left lung 

region. Even though DenseNet121-WPM also marked the left lung region; it emphasized 

more on the diagram, hence the wrong labeling.   

Figure 10(a) shows a sample of CXR that is positive for mass. The location of the mass 

is in the left upper and lower lobe. Figure 10(b)-(f) show the output result of the Grad-CAM 

algorithm for different ResNet50 models that were trained by different input data types. 

Models trained using images, IIPM and IWPM, show similar marked regions; they extend 

from the left clavicle bone to the lung right middle lobe. For IIPM and IWPM, the region 

does not cover any mass. Thus, the model is falsely labeled as negative. ResNet50+IPM 

correctly marked the left-upper lobe, and the mass contained in it. ResNet50+WPM only 

weakly marked this region. No model correctly marked the mass at the left lower lobe. From 

the example of results shown in Fig. 10, it can be concluded that the trained model failed to 

learn a mass feature. It also emphasizes the need for more effective feature extraction if we 

want to detect masses in CXR more accurately.   

Fig. 10: Output of the Grad-CAM algorithm for the mass/nodule dataset.  

Regions that are marked red are regions that the ResNet50 deems important. 

5. CONCLUSION

In this paper, we introduce the Xenafas algorithm, which creates the IMP and WMP

anomalous saliency mapping for CXR images. A qualitative study by a certified radiologist 

has shown that the algorithm can highlight most foreign objects and cardiomegaly in the 

CXR samples tested; however, it is inconsistent in highlighting masses and nodules. It has 

also been shown that using IMP and WMP over regular CXR images increases the 

sensitivity of most CNN models that were tested. Using the Grad-CAM algorithm, it has 

been demonstrated that by using the IMP and WMP, the CNN model shifted its focus to a 
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more relevant CXR image region. The results obtained from the experiment conducted show 

that the IMP and WMP can be an alternative to regular CXR images for future machine 

learning development.   
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