
IIUM Engineering Journal, Vol. 22, No. 2, 2021 Khairi et al.
https://doi.org/10.31436/iiumej.v22i2.1613

A REVIEW OF FLOW CONFLICTS AND SOLUTIONS

IN SOFTWARE DEFINED NETWORKS (SDN)

MUTAZ HAMED HUSSIEN KHAIRI1,2*, SHARIFAH HAFIZAH SYED ARIFFIN1, NURUL

MUAAZAH. ABDUL LATIFF1,
KAMALUDIN MOHAMED YUSUF1 AND MOHAMED KHALAFALLA HASSAN1,2

1School of Electrical Engineering, Faculty of Engineering,

University Technology Malaysia, Johor, Malaysia
2Faculty of Engineering, Future University, Khartoum, Sudan

*Corresponding author: taza1040@gmail.com

 (Received: 17th September 2020; Accepted: 16th February 2021; Published on-line: 4th July 2021)

ABSTRACT: Software Defined Networks (SDN) are a modern networking technology

introduced to simplify network management via the separation of the data and control

planes. Characteristically, flow entries are propagated between the control plane layer and

application or data plane layers respectively while following flow table instructions

through an OpenFlow protocol. More often than not, conflicts in flows occur as a result of

traffic load and priority of instructions in the data plane. Several research works have been

conducted on flow conflicts in SDN to reduce their adverse effect. Solutions to flow

conflict in SDN have three main limitations. First, the OpenFlow table may still cause a

defect in the security module according to the priority and action matching in the

OpenFlow of the control plane. Second, flow conflict detection requires more time due to

flow tracking and incremental update, whereas in such a case, delay affects the efficiency

of SDN. Besides, the SDN algorithm and mechanism have substantially high memory

requirement for instruction and proper functioning. Third, most of the available algorithms

and detection methods used to avoid flow conflicts have not fully covered the security

model policy. This study reviews these limitations and suggest solutions for future

research directions.

ABSTRAK: Rangkaian Perisian Tertentu (SDN) adalah teknologi rangkaian moden yang

diperkenalkan bagi memudahkan pengurusan rangkaian melalui pecahan data dan kawalan

permukaan. Seperti biasa, aliran kemasukan disebar luas antara lapisan permukaan

kawalan dan aplikasi atau lapisan permukaan data masing-masing, sambil mengikuti

arahan meja melebar melalui protokol aliran terbuka. Kebiasaannya konflik dalam aliran

berlaku disebabkan oleh beban trafik dan keutamaan arahan pada permukaan data.

Beberapa kajian dibuat terhadap konflik aliran SDN bagi mengurangkan kesan konflik.

Solusi konflik aliran dalam SDN mempunyai tiga kekurangan besar. Pertama, jadual

Aliran Terbuka mungkin masih menyebabkan kekurangan dalam modul keselamatan

berdasarkan keutamaan dan tindakan persamaan dalam aliran terbuka permukaan kawalan.

Kedua, pengesanan aliran konflik memerlukan lebih masa bagi pengesanan aliran dan

peningkatan kemaskini, kerana setiap penangguhan memberi kesan terhadap kecekapan

SDN. Selain itu, algoritma SDN dan mekanisme memerlukan memori yang agak besar

bagi memproses arahan dan berfungsi dengan baik. Ketiga, kebanyakan algoritma dan

kaedah pengesanan yang digunakan bagi mengelak konflik pengaliran tidak sepenuhnya

dilindungi polisi model keselamatan. Oleh itu, kajian ini meneliti kekurangan dan memberi

cadangan penambahbaikan bagi arah tuju kajian masa depan yang terbuka.

KEYWORDS: software defined networking; open flow table; flow conflicts

178

IIUM Engineering Journal, Vol. 22, No. 2, 2021 Khairi et al.
https://doi.org/10.31436/iiumej.v22i2.1613

1. INTRODUCTION

Software Defined Network (SDN) is a modern network architecture that has been

proposed to mitigate the shortcomings related to traffic management, security, virtualization

and complexity of traditional networks [1]. The main characteristics of SDN include: 1)

separation and abstraction of the control and data plane; 2) logical centralization of network

intelligence that enables global view of the entire network and swift response changing

needs; 3) ability to develop different applications from the underlying network

infrastructure; 4) programmable data plane for networking automation and flexibility; 5)

much higher innovation speed to accelerate business innovation and possibility of

reprograming of the network by the IT network operators in real time to meet specific

business needs. Moreover, through the virtualization process, the network infrastructure can

be extracted from individual network services [2].

OpenFlow is a SDN protocol designed to facilitate server communication with network

switches; particularly regarding sending and receiving packets. As a flow-based network

virtualization architecture, it allows multiple logical networks to share the same physical

infrastructure. While the network virtualization layer allows for a set of controllers to

manage multiple switches per slice, controllers are responsible for installing flow entries in

the assigned domain of switches. In such a design, one physical switch could belong to

multiple virtual networks which may be controlled by one or more set of controllers. This

design setup leads to flow conflicts [3]. In today’s Internet, network traffic is routed based

on the destination address prefixes. While this approach allows an efficient implementation

of shortest-path (and more complex) routing protocols, it does not provide fine-grained

control over network traffic. However, many proposals for future internet architectures

require that the network data plane implement routing and forwarding at the level of

individual connections or their aggregate e.g., for network virtualization, or for network

services [4,5].

2. PROBLEM BACKGROUND AND OBJECTIVES OF THE

RESEARCH

Conflict in flow entries manifest in different ways in SDN such as where a physical

switch belongs to multiple virtual networks that are often controlled by one or a set of

controllers; thus, resulting in the occurrence of flow conflict. Flow conflicts may also occur

when vague packets match flow entries. Based on the priority of the flow entry, flow entry

conflicts in an open flow table can cause defects in the security module that runs on top of

the SDN. An approach used, is to match flow entry packets based on the priority of flow

entries. However, because of the similarities between different flow entries, a single packet

can be matched to several flow entries, thereby resulting in flow entry conflict [1].

While representative algorithms and detection methods have been proposed to mitigate

flow entry conflicts [1-3], they have been shown to have high memory requirements and

require a significant amount of time to apply their instructions in the flow table. Specifically,

the time taken to add or update flows in case of conflict in the flow entry is high; thus,

affecting the performance of the SDN network. In addition, most of these past studies used

old versions of flow table in their simulations and experiments.

The present study was initiated,

i. To study and analyze flow entry conflicts in OpenFlow table.

179

IIUM Engineering Journal, Vol. 22, No. 2, 2021 Khairi et al.
https://doi.org/10.31436/iiumej.v22i2.1613

ii. To review the existing detection methods used for flow conflict resolution in

OpenFlow table.

3. SDN ARCHITECTURAL COMPONENTS

The three core components of the SDN architecture are: the SDN controller, also known

as control layer; the data plane layer, which is made up of a collection of network devices

like routers, switches and OpenFlow switches that act as middle boxes for network

communication; and the application layer, where the execution of all network applications

take place. Figure 1 shows the SDN architecture. It can be clearly observed that it is

characterized by the separation of the control and infrastructure layers. This is advantageous

in that the application layer can be developed and modified by application developers by

using a northbound interface that provides advanced policy applications and services as well

as programmable Application Programming Interfaces (API) for this purpose. Moreover,

the southbound interface also provides the OpenFlow protocol, which is a standard API

[4,5].

 Fig. 1: Software Defined Networking framework [6].

4. OPENFLOW (OF) IN SDN

OpenFlow was one of the first software defined networking (SDN) standards. It was

originally a communication and connection protocol in SDN environments that allowed the

controller to directly interact with the forwarding plane of network devices for better

adaptation to changing business requirements [7].

4.1 OpenFlow Switch and Protocol

OpenFlow was driven by the characteristic separation of the control and forwarding

planes in SDN. The OpenFlow switch architecture is illustrated in Fig. 2. The OpenFlow

switch, which also contains a number of flow tables, is connected to the controller via an

OpenFlow channel. Likewise, OpenFlow switches also have an abstraction layer through

which they communicate with the controller via the OpenFlow protocol. The flow table

checks which packet belongs to which flow in order for the packets to be processed and

delivered [1,4].

180

https://www.sdxcentral.com/wp-content/uploads/2013/08/SDN-Framework1.jpg

IIUM Engineering Journal, Vol. 22, No. 2, 2021 Khairi et al.
https://doi.org/10.31436/iiumej.v22i2.1613

 Fig. 2: OpenFlow switch [5].

• Group table: for packet lookup and forwarding.

• OpenFlow channel: responsible for connection between controller and

switch.

• Flow table: flow entry – match field – counter and set instruction.

4.2 OpenFlow Ports

OpenFlow ports perform the function of transferring packets between open flow

switches and other devices in the network such as routers or hosts. All OpenFlow switches

in the SDN network are connected through OpenFlow ports. Some network interfaces may

also be disabled in the OpenFlow switch [8].

4.3 OpenFlow Table and Entry

The OpenFlow switch is comprised of several flow tables, each of which has flow

entries. The processing pipeline of OpenFlow stipulates the interaction between packets and

flow tables. Depending on the application and network structure, an OpenFlow switch may

have one or more flow tables [8].

4.4 Flow Table

Flow tables consist of several flow entries as shown in Table 1.

Table 1: Flow entries and their definitions [8].

Match

Fields

Priority Counters Instructions Timeouts Cookie

Used to

match

between

packets

For

matching

priority

of flow

entries

To update

the proper

packets

To adjust the

action set of a

flow entry

Maximum

time or

inactive time

before

switch

terminates a

flow entry

For

reporting a

modified or

deleted flow

entry to

controller

181

IIUM Engineering Journal, Vol. 22, No. 2, 2021 Khairi et al.
https://doi.org/10.31436/iiumej.v22i2.1613

5. EXISITING SOLUTIONS TO FLOW CONFLICTS IN SDN

This section discusses the research that has been conducted on detecting flow conflicts

in SDN. The studies are explained based on their method, controller type, switch, conflict

type, topology, and target application respectively, as in Table 2.

Table 2: List of Existing Solution on Flows Conflict in SDN

Method or

Techniques

Reference

Research

Controller

Model

Switch

Model

Conflict

type

Network

topology

Target

application

Mechanism

or

Algorithm

Lo et al. [1] - - Flow

entries

Single

topology

Network

optimization

performance

Hu et al. [3] Floodlight OpenFlow

Switch

Flow

rule

Tree

topology

Security

Fang and Lu [7] - - Flow

 rule

Single

topology

Network

efficiency

Pisharody et al. [9] Open

Daylight

OpenFlow

switch

Flow

 rule

Tree

topology

Security

Lu et al. [10] NOX OpenFlow

Switch

Policy

rule

Tree

topology

Security

Wang and Youn

[11]

Floodlight Open

vSwitch

Flow

entries

Single

topology

Network

optimization

performance

Cui et al. [12] Floodlight OpenFlow

Switch

Flow

rule

Tree

topology

Network

efficiency

Hao et al. [13] NOX OpenFlow

switch

Flow

rule

Tree

topology

Network

optimization

performance

Halder et al. [14] OF

Controller

OpenFlow

switch

Flow

rule

Tree

topology

Security

Batista et al. [15] OF

Controller

OpenFlow

switch

Flow

entries

Single

topology

Security

Hong and Wey [16] Floodlight Open

vSwitch

Flow

rule

Tree

topology

Network

optimization

performance

Analytical

method

Metter et al. [2]

-

- Flow rule Single

topology

Network

optimization

performance

Lin et al. [17] Ryu OpenFlow

switch

Flow

entries

Tree

topology

Network

optimization

performance

Tran and Danciu

[18]

- - Flow rule Tree

topology

Network

optimization

performance

Yoshioka et al. [19] - - Flow rule Single

topology

Link

utilization

5.1 Purpose of Flow Conflict Detection Techniques

Flow entry conflict detection methods in SDN applications have been used for different

purposes such as security, load balance, and firewall amongst others, as shown in Table 2.

A number of detection algorithms have attempted to optimize the performance of the

182

IIUM Engineering Journal, Vol. 22, No. 2, 2021 Khairi et al.
https://doi.org/10.31436/iiumej.v22i2.1613

controller by checking and arranging its workload. In [16], the controller was used to control

elephant and safety-critical flows using interactive routing. In the study, switch layers were

designed to move micro flows through multipath wildcard routing without soliciting or

using the controller plane. A firewall policy, named Flow Guard, that is meant to secure the

policy contravention in flow table of the OpenFlow switch with controller was proposed in

[3]. It tracks flow or path spaces in the network to detect firewall policy contravention within

network updates. In a separate work in [20], a method was proposed to check and detect

contradiction between the rules installed in a firewall with flow table instructions. The rules

applied in the OpenFlow design is to increase the safety and security capabilities for SDN.

5.2 Method and Algorithm Used for Flow Conflict Detection

One of the famous approaches used in the detection of conflicts in flow entries within

SDN is the Reduced Bit Vector algorithm. This algorithm uses the concept of bit vectors

alongside one of the classification methods to classify flow entries in two main groups. In

the first group, flows have the same prefix length while the second group contains a decrease

in the redundant bits of vectors [1]. One of the solutions introduced and built for optimizing

and securing flow entry in SDN research is a security module that minimizes the amount of

controller workload by separating the responsibilities of each controller [16]. A simple

analytical model is formulated to enable network performance optimization relative to the

signaling rate and table occupancy [2]. The research used a flow guard method for building

a firewall to conduct checks and detect violation of firewall policy along the network flow

path when updating the status of the network [3]. A routing method is used to ensure optimal

link utilization as well as in the minimization of flow entry size. To ensure optimal link

utilization, the proposed method assigns the same paths to flows that can be grouped

together [19]. A security application, named FRESCO, has been proposed and implemented

to address security challenges. The FRESCO framework consists of an application layer and

a security enforcement kernel [21] Brew. The proposed policy is used to analyze the

controller settings to detect conflicts and create solution modules which avoids conflict in

flow rules within a distribution-based SDN system [9]. Source routing has also been used

in flow route control. In [22], a Source Routing Based Link Protection Method whose link

has paths to dedicated backup was used to direct packets to their backup paths by updating

the header of the source router in case of link failure. Performance evaluation of this method

has been shown to significantly update the source routing header.

5.3 Experimental Environment Used in Flow Conflict Detection

The experimental environment used for flow entry conflict detection in SDN varies

according to the method or algorithm. This section details the experimental environments

used in flow conflict detection studies in SDN. [16] developed a simple network with four

switches (grid network) connected to one host. Using a floodlight controller with OpenFlow

switch version 1.3, all tests and observations were simulated and analyzed with Mininet

software. Many studies in SDN use MATLAB software with Mininet and virtual machine

software as simulation tools for analyzing and optimizing the traffic and flow entry in SDN.

Figure 3 shows an example of a similar research, where the design structure depends on

how the OpenFlow switch deals with controller under FRESCO instruction [2].

Additionally, Fig. 4 shows the Brew system model. It uses two virtual switches

connected to a controller where all the conflicting flow entries are checked and analyzed in

line with the controller plane [9].

183

IIUM Engineering Journal, Vol. 22, No. 2, 2021 Khairi et al.
https://doi.org/10.31436/iiumej.v22i2.1613

Fig. 3: High level overview of the FRESCO architecture [2].

Fig. 4: System architecture showing Brew solution models [9].

5.4 SDN Controller Used in Flows Conflict Detection Techniques

The SDN controller is called the “network brain” [23]. It ensures that different network

tasks are performed through effective management of the application modules of the

network. The applications typically leverage an API, as in [24], to enable advanced network

functionalities while facilitating communication with core controller modules. We discuss

both commercial and open-source controllers that are widely used in load balancing modules

of the server. While the software load balancing module in the commercial controllers are

standalone systems connected to the controller for API utilization purposes, they function

as part of the controller system within the application layer in the open-source version. A

popular open-source controller is the high-performance java-based OpenFlow controller

called Flood Light Controller, which is based on Beacon controller, an experimental

OpenFlow controller from Stanford University that now has a large community of

developers that supports it. The latest version of Floodlight has support for OpenFlow

version 1.4 [25]. Open Daylight (ODL) SDN controller is another type of controller used to

implement Brew [9].

184

IIUM Engineering Journal, Vol. 22, No. 2, 2021 Khairi et al.
https://doi.org/10.31436/iiumej.v22i2.1613

5.5 Parameter Measure in Flow Conflict Detection

Flow entry in SDN is generally measured by different types of parameters, we focus

only on parameters such as time of search, update time, elephant flows, and Link Bandwidth

as measured parameters in the flow entry conflict detection.

6. ANALYSIS AND DISCUSSION

We aim, by this research, to define the types of flow rule conflict that occur in SDN. A

number of researchers have used a Static Programming language module by leveraging the

OF Analyzer module named Brew; a security policy analysis framework that is developed

on an Open Daylight (ODL) based SDN controller [9]. In [10], a method was proposed for

accurate detection of universal conflicts. In the proposed mechanism, checks are carried out

for policy conflict with machine learning for 500 policies applied in a simulated network.

The study also introduced a novel flow management project for MFTs for Open vSwitch in

SDN. The memory requirement of the research shows that the Ex table requires a large

memory space [11].

The authors of [7] used the MTBDD algorithm to conduct and clarify switch conflict

rules in SDN. The test of algorithm offers good functionality on incremental updates of two

different rule groups from Stanford’s Internet network. In a separate research, TCDR was

used to reject illegal flow rules, thus, avoiding substantial conflicts in flow rules while

incurring minimal overhead [12].

The detection mechanism for conflicting flows in the rules of a flow table as presented

in [13] takes 1ms of time. However, it should be noted that the effect of the firewall rule is

not considered for table update. In [14], a graph based technique is applied to produce a

guide graph from obtainable flow rules built-up by several controller applications within

SDN to determine flow transgression. A classification method is proposed to classify the

flow entries in two main groups; with the first group of the flow having same prefix length,

while the second group contains a decrease in the redundant bits of vectors . In using RVB,

there is still notable delay in time of search and incremental update (over 2 ms) [1]. In [15],

the author used an intelligent technique for conflict in flow entries within SDN. While the

proposed method effectively detected most of the conflicts that appeared in the flow table,

its high memory requirement remained a major shortcoming.

Lin et al. [17] used most of the parameters configured in OpenFlow tables to conduct

cross-layer testing between two different flow entries. The priority of flow of the entire

inflow table was experimentally observed. The proposed method showed impressive

accuracy. The research analytically showed that the conflict of applications in SDN can be

detected and analyzed without stopping the application [18].

An analytical model has been proposed for SDN Signaling Traffic and Flow Table

Occupancy in [2]. The model was designed to allow network performance optimization

relative to signaling rate and table occupancy. The importance of this model could decrease

in the near future when switches are upgraded or the size of the flow table is increased. A

method of optimizing controller workload with a view to minimizing the amount of

controller workload by separating the responsibility of each controller has been

demonstrated in [16]. The potential services considered and checked in this research do not

include File Transfer Protocol (FTP).

A method, called flow entry aggregation, capable of reducing the maximum number of

flow entries while suppressing the maximum link utilization, was proposed in [20].

185

IIUM Engineering Journal, Vol. 22, No. 2, 2021 Khairi et al.
https://doi.org/10.31436/iiumej.v22i2.1613

However, a key drawback of this method is that it cannot by itself prevent any loops from

occurring in the network; thus, it is susceptible to flow entry conflicts [19].

7. CONCLUSION

What has been presented in this research is mainly concerned with flow conflict issues

in SDN and how they have been mitigated in the flow table. According to the reviewed and

discussed articles, flow conflicts can be classified into two major types, flow rules and flow

entries. Summarily, researchers have used only two methods to detect flow conflict in SDN;

majority of them using an algorithmic approach while a few used analytical methods.

Floodlight, Open Daylight, POX and Ryu controllers were the most commonly used

controllers in experimental and test studies while only two types of network topologies, tree

and single topology, were used in the pertinent literatures. The target application in most

studies is network optimization and performance while only a few studies targeted security

issues.

From all the reviewed studies, a research involving the use of Artificial Intelligence

such as the machine learning method to detect flow conflicts in the OpenFlow table for

network security related issues still remain lacking. Thus, this study proposes an anomaly

detection algorithm using machine learning to detect and classify flow conflicts in the

OpenFlow table as an interesting future research direction. The goals of such an algorithm

will be to classify flow rules while concurrently reducing the delay in the update flow table

of the controller.

REFERENCES

[1] Lo C, Wu P, Kuo Y. (2015) Flow entry conflict detection scheme for software-defined

network. International Telecommunication Networks and Applications Conference (ITNAC),

Sydney, Australia, pp. 220-225.

[2] Metter C, Seufert M, Wamser F, Zinner T, Tran-Gia P. (2017) Analytical model for SDN

signaling traffic and flow table occupancy and its application for various types of traffic. IEEE

Transactions on Network and Service Management, 14(3): 603-615.

[3] Hu H, Han W, Ahn GJ. Zhao Z. (2014) FLOWGUARD: Building robust firewalls for

software-defined networks. in Proceedings of the third workshop on Hot topics in software

defined networking August 2014. pp 97-102.

[4] Akyildiz, IF, Lee A., Wang P, Luo M, Chou W. (2014) A roadmap for traffic engineering in

SDN-OpenFlow networks. Computer Networks, 71: 1-30.

[5] Bozakov Z, Sander V. (2013) OpenFlow: A perspective for building versatile networks.

in: Network-Embedded Management and Applications, Clemm A, Wolter R. (eds).

Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6769-5_11

[6] sdx central [https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-of-

software-defined-networking-sdn]

[7] Fang Y, Lu Y. (2019) Checking intra-switch conflicts of rules during preprocessing of

network verification in SDN. IEEE Communications Letters, 23(9): 1547-1550.

[8] OpenFlow Specification [http://networkstatic.net/wp-content/uploads/2013/02/openflow-

spec-v1.3.0.pdf]

[9] Pisharody S, Natarajan J, Chowdhary A, Alshalan A, Huang D. (2019) Brew: A security

policy analysis framework for distributed SDN-based cloud environments. IEEE Transactions

on Dependable and Secure Computing, 16(6): 1011-1025.

[10] Lu Y, Fu Q, Xi X, Chen Z, Zou E, Fu B. (2019) A policy conflict detection mechanism for

multi-controller software-defined networks. International Journal of Distributed Sensor

Networks 15 No (5),http://doi.org/10.1177/1550147719844710.

[11] Wang C, Youn HY. (2019) Entry aggregation and early match using hidden Markov model

of flow table in SDN. Sensors, 19(10), 2341; https://doi.org/10.3390/s19102341.

186

https://doi.org/10.1177%2F1550147719844710
https://doi.org/10.3390/s19102341

IIUM Engineering Journal, Vol. 22, No. 2, 2021 Khairi et al.
https://doi.org/10.31436/iiumej.v22i2.1613

[12] Cui J, Zhou S, Zhong H, Xu Y, Sha K. (2018) Transaction-based flow rule conflict detection

and resolution in SDN. 27th International Conference on Computer Communication and

Networks (ICCCN), Hangzhou, China, pp. 1-9.

[13] Hao W, Jiang Y, J. Gao J. (2017) Detection mechanisms of rule conflicts in SDN based on a

path-tree model. 8th IEEE International Conference on Software Engineering and Service

Science (ICSESS), Beijing, China, pp. 336-339.

[14] Halder B, Barik MS, Mazumdar C. (2017) A graph based formalism for detecting flow

conflicts in software defined network. 2017 IEEE International Conference on Advanced

Networks and Telecommunications Systems (ANTS), Bhubaneswar, India, pp. 1-6.

[15] Lopes Alcantara Batista B, Lima de Campos GM, Fernandez MP. (2014) Flow-based conflict

detection in OpenFlow networks using first-order logic. 2014 IEEE Symposium on

Computers and Communications (ISCC), Funchal, Portugal, pp. 1-6.

[16] Hong ETB, Wey CY. (2017) An optimized flow management mechanism in OpenFlow

network. 2017 International Conference on Information Networking (ICOIN), Da Nang,

Vietnam, pp. 143-147.

[17] Lin YD, Lai YK, Tsou YL, Lai YC, Liou EC, Chiang Y. (2019) Generic validation criteria

and methodologies for SDN applications. IEEE Systems Journal, 13(4): 3909-3920.

[18] Tran CN, Danciu, V. (2020) A general approach to conflict detection in software-defined

networks. SN Comput. Sci, 1(1), 9, https://doi.org/10.1007/s42979-019-0009-9

[19] Yoshioka K, Hirata K, Yamamoto M. (2017) Routing method with flow entry aggregation for

software-defined networking. 2017 International Conference on Information Networking

(ICOIN), Da Nang, Vietnam, pp. 157-162,

[20] Pallavi N., Anisha A.S., Leena V. (2017) Detection of Incongruent Firewall Rules and Flow

Rules in SDN. In: Dash S., Vijayakumar K., Panigrahi B., Das S. (eds) Artificial Intelligence

and Evolutionary Computations in Engineering Systems. Advances in Intelligent Systems and

Computing, vol 517. Springer, Singapore. https://doi.org/10.1007/978-981-10-3174-8_2.

[21] Shin SW, Porras P, Yegneswara V, Fong M, Gu G, Tyson M. (2013) Fresco: Modular

composable security services for software-defined networks. in February 2013- 20th Annual

Network & Distributed System Security Symposium. http://hdl.handle.net/10203/205914

[22] Huang L, Shen Q, Wenjuan S. (2016) A source routing based link protection method for link

failure in SDN. 2nd IEEE International Conference on Computer and Communications

(ICCC), Chengdu, China, pp. 2588-2594.

[23] Jarschel M, Zinner T, Hoßfeld T, Tran-Gia P, Kellerer W. (2014) Interfaces, attributes and

use cases: A compass for SDN. IEEE Communications Magazine, 52(6): 210-217.

[24] Zhou, J. (2014) Multicatalyst system in asymmetric catalysis. John Wiley & Sons.

[25] OpenFlow Switch Specification OpenFlow Switch Specification, O.S., Version 1.4. 0,

October 14, 2013. [https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-

v1.4.0.pdf]

187

