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ABSTRACT:  This paper focuses on the interaction of SH elastic waves in a plate with a 
tapered free end. The plate is modeled as a semi-infinite elastic structure, which was 
assumed to have traction-free surfaces. The results of the analysis based on mode matching 
are presented for various combinations of normalized frequencies and angles of free end 
inclination. The reported observations form important guidelines for the interpretation of 
experimental data when using horizontally polarized wave as a mean for nondestructive 
evaluation of elastic plates.   

ABSTRAK: Kertas kerja ini adalah khusus berkenaan interaksi gelombang anjal SH di 
dalam plat yang mempunyai hujung bebas yang tirus. Plat ini dimodelkan sebagai satu 
struktur elastik separa tak terhingga, yang diandaikan mempunyai permukaan nirgeseran. 
Keputusan analisis berdasarkan mod pemadanan dibentangkan untuk pelbagai kombinasi 
frekuensi ternormal dan sudut kecondongan hujung bebas. Pemerhatian yang dibentangkan 
memberi panduan penting dalam menginterpretasi data eksperimental penggunaan 
gelombang berkutub mendatar sebagai satu kaedah penilaian tanpa musnah plat anjal. 

KEYWORDS:  elastic plates; ultrasonic wave scattering; nondestructive evaluation 

1. INTRODUCTION 
The non-destructive testing (NDT) of materials become more important and demanding 

as they are used in safety critical applications such as aircraft primary structure. A decisive 
method for evaluating the condition of plate structures is the utilization of ultrasonic wave 
scattering due to the presence of inclusion or inclusions and defects such as cracks and flaws. 

Methods of solution of scattering problem vary from classical approach such as mode 
matching and variational techniques to numerical techniques such as finite elements and 
boundary elements approach or combination of numerical formulation with a wave function 
expansion technique. There is an extensive literature on the studies of scattering of elastic 
waves in plates due to inclusion, cracks, or weldments. Among these, the work of Sabbagh et. 
al. [1] who has analyzed scattering of SH waves. In their approach, it is assumed that the plate 
wave guide admits a single mode only and all the higher modes in the waveguide are 
neglected. Abduljabbar et. al. [2] studied the diffraction of SH waves in a plate by arbitrary 
defects where finite element formulation and a wave function expansion technique is 
employed. Koshiba et al. [3] have analyzed SH wave scattering using similar approach. In 
their analysis, they have taken the number of normal modes and the number of nodal points 
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along the interface to be independent. Datta et al. [4] and Fortunko et al. [5] studied the 
diffraction of SH waves by edge crack and planar defects using low –frequency and medium 
and long wavelength. To the author knowledge, the scattering of SH waves by an inclined 
edge of an elastic plate has not been reported.  

Recently, an interest is raised in the reflection of elastic waves from inclined free edges 
of elastic plates. Wilkie-Chancellier et al. [6-8] performed finite element analyses and laser 
interferometer / vibrometer experiments on the reflection of the Sₒ, Aₒ, and A1 Lamb modes 
from an inclined edge of elastic plates having different values of the bevel angle. They proved 
that the edge mode was the resonance of different complex modes.  Galán and Abascal [9] 
used a hybrid finite-element / boundary element technique to study Lamb mode conversion at 
inclined or perpendicular free edges of elastic plates for frequencies beyond the first cutoff 
frequency. 

In this paper, a mode matching technique is used to investigate the scattering of SH 
waves due to impinging on a tapered end of an elastic plate. Mode matching procedure is 
followed along a fictitious boundary inside the plate while satisfying the continuity of 
displacement and stresses condition. A stress-free condition is satisfied at the inclined 
surfaces of the plate. Numerical integration leads to a system of linear algebraic equations for 
the reflection coefficient of the scattered field. 

2. PROBLEM FORMULATION  
Let us consider a plate shown in Fig. 1. The plate is assumed to be elastic of uniform 

thickness, 2h, and has traction-free surfaces. Two regions can be identified and these are plate 
region, 1, and wedge region, 2. The two regions are assumed to be separated by a fictitious 
boundary.  

 
Fig. 1: Plate Geometry. 

In the plate region, 1,   the total displacement field, wT, can be written as  
                                            wT = winc + wref                                                              (1) 

where the superscripts inc and ref in the above equation stand for incident and reflect field, 
respectively. Incident field, winc, consists of a single propagating mode propagating in the 
negative x-direction. The incident field is assumed to be time harmonic wave, and given by 
the following expression 
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where k and  are  wavenumber and frequency, respectively. The relationship between these 
two quantities is given by the following expression  2
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The reflected field, wref, is generally composed of a number of reflected modes 
(propagating and non-propagating modes) in the plate region. The reflected field (scattered) 
takes the following expression 
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The displacement field in wedge region, 2, is given by 
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where  is the wedge angle and cs is the shear velocity, (G/)1/2. G and  stand for the shear 
modulus and density, respectively. Note that the solution in the wedge perfectly satisfies the 
traction free boundary conditions at the two surfaces 1 and 2.  

Imposing the continuity of displacement and stress along the fictitious boundary, 3, 
gives  

                                 wT |plate = wtr |wedge , r = R , 0     

                                T |plate = tr |wedge , r = R , 0     

where wtr is the displacement field in the wedge. The stress field, T, is given by  

                                          T|plate = (inc + ref) |plate 

But the shear stress,, takes the following form  

                                                 = xz nx + yz ny  

where nx and ny are the direction cosine of the outward unit normal vector n along the 
boundary 3.  

It remains to choose weight functions of the form 
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Then, the above boundary conditions lead to the following equations: 
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where primes indicate differentiation with respect to r (i.e., d(..)/dr). By letting reflected 
modes L=N.  These continuity equations can be integrated through the angle of the wedge 
after multiplying them with a set of weight functions. By this way, it leads to a set of 
algebraic equations (3N equations) in which the coefficients, Bl, Cn, and Dn can be determined 
after setting intensity of the incident wave, Ai,   to be one. 

3. RESULTS AND DISCUSSION 
A semi-infinite plate of a homogeneous, isotropic, linearly elastic material is considered. 

The elastic plate is made of stainless steel and has a density and a shear modulus of 7.8 g/cm3 
and 0.81 x1011 Pa, respectively. 

A time-harmonic SH wave propagates in the plate and is incident upon the inclined end of 
the plate. Since the end of the plate is considered to be stress free, the wave scattering problem 
reduces to determining the formed reflected wave field. Only the traveling modes have the 
capability of carrying the incident wave energy back into the plate. These traveling modes are 
supplemented by a series of end modes, which are associated with purely imaginary wave 
numbers, in order to satisfy a traction-free end conditions. The number of modes, N, in the 
wave expansion function has been chosen to be 15 modes as to include all the propagating and 
non-propagating ones. The accuracy of the results is determined by studying the error norm in 
the energy balance.  

In order to understand wave scattering, a single SH mode is incident on the free end of the 
plate and reflected SH modes are examined.. Two cases are considered; in the first, the zeroth 
symmetric mode is incident on the edge at selected frequencies and in the other, the first anti-
symmetric mode is incident on the edge at the same range of frequencies.  The results are 
presented in terms of the energy content of the reflection modes  for the two cases. 

The inclined free end of the plate is allowed to take various angles of inclination. Figures 
2 and 3 show the energy ratio (En / Etotal) of the reflected SH modes from the incidence of the 
zeroth SH mode over the full range of angles of inclination as functions of the normalized 
frequencies, Ω = (2ωh/πc),  of 1.5.  
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Fig. 2: The energy ratio (En / Etotal) of the reflected SH modes (symmetric). 

 

Fig. 3: The energy ratio (En / Etotal) of the reflected SH modes (anti-symmetric). 

Figures 4 and 5 show the energy ratio (En / Etotal) of the reflected SH modes from the 
incidence of the zeroth SH mode over the range the normalized frequencies from 1 up to 2. 
Figures 6 and 7 show corresponding results, (En / Etotal), for the case when the first SH mode is 
incident on the free edge. 

 
Fig. 4: The energy ratio (En / Etotal) of the reflected SH modes (symmetric). 
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Fig. 5: The energy ratio (En / Etotal) of the reflected SH modes (symmetric). 

 

Fig. 6: The energy ratio (En / Etotal) of the reflected SH modes (anti-symmetric). 

 

Fig. 7: The energy ratio (En / Etotal) of the reflected SH modes (anti-symmetric). 

From the presented figures, one can report the following observations:  

1. Mode conversion of SH modes occurs if the end of the plate is tapered at low normalized 
frequency (e.g., Ω = 1.5, where two propagating modes only) and for certain inclination 
angles. 

2. At certain inclination angles, total (or most of) reflection energy is carried by the-incident 
mode itself, which increases the possibility of standing wave formation. 
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3. There are, however, other inclination angles that leads to the formation of reflected fields 
comprised of non-incident modes. Hence, the ultrasonic field in the plate becomes multi-
modal in nature. 

4. CONCLUDING REMARKS  
The study reported here deals with a single incident mode only. These curves of the 

reflection coefficients may be very useful in practical nondestructive testing.  In an actual 
experiment the incident disturbance will be due to a time dependent source. Then the field, in 
the frequency domain, will be made of multiple propagating modes. Using the outcome results, 
in terms of reflection coefficients, it would be possible to find the total scattered field by 
summing up the modal contributions. In addition, the reported results could be used as 
reference information base as a perfectly edged blade with no cracks or defects. Also, this 
study shows that there are some critical angles of inclination in which the incident mode 
(symmetric or anti-symmetric is totally reflected in an inversely fashion. In other words, an 
incident symmetric mode reflected into an anti-symmetric mode and vice versa.     
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