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ABSTRACT:  Data mining is the extraction of information and its roles from a vast amount 

of data. This topic is one of the most important topics these days. Nowadays, massive amounts 

of data are generated and stored each day. This data has useful information in different fields 

that attract programmers’ and engineers’ attention. One of the primary data mining classifying 

algorithms is the decision tree. Decision tree techniques have several advantages but also 

present drawbacks. One of its main drawbacks is its need to reside its data in the main 

memory. SPRINT is one of the decision tree builder classifiers that has proposed a fix for this 

problem. In this paper, our research developed a new parallel decision tree classifier by 

working on SPRINT results. Our experimental results show considerable improvements in 

terms of the runtime and memory requirements compared to the SPRINT classifier. Our 

proposed classifier algorithm could be implemented in serial and parallel environments and 

can deal with big data. 

ABSTRAK: Perlombongan data adalah pengekstrakan maklumat dan peranannya dari 

sejumlah besar data. Topik ini adalah salah satu topik yang paling penting pada masa ini. Pada 

masa ini, data yang banyak dihasilkan dan disimpan setiap hari. Data ini mempunyai 

maklumat berguna dalam pelbagai bidang yang menarik perhatian pengaturcara dan jurutera. 

Salah satu algoritma pengkelasan perlombongan data utama adalah pokok keputusan. Teknik 

pokok keputusan mempunyai beberapa kelebihan tetapi kekurangan. Salah satu kelemahan 

utamanya adalah keperluan menyimpan datanya dalam memori utama. SPRINT adalah salah 

satu pengelasan pembangun pokok keputusan yang telah mengemukakan untuk masalah ini. 

Dalam makalah ini, penyelidikan kami sedang mengembangkan pengkelasan pokok 

keputusan selari baru dengan mengusahakan hasil SPRINT. Hasil percubaan kami 

menunjukkan peningkatan yang besar dari segi jangka masa dan keperluan memori 

berbanding dengan pengelasan SPRINT. Algoritma pengklasifikasi yang dicadangkan kami 

dapat dilaksanakan dalam persekitaran bersiri dan selari dan dapat menangani data besar. 
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1. INTRODUCTION

Recently, too much data is generated and stored on servers per day. This data has great

amounts of essential and useful information and therefore, searching through this data can be 

one of the most essential topics in data science. The process of extracting information from 

large data sets and discovering patterns is termed data mining and it involves methods from 

artificial intelligence, machine learning, and database systems. One of the main goals of the 

data mining process is to build a logical structure from the extracted information and prepare 
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this information for further use. The data mining process involves many sub-processes like data 

collection, database management, data pre-processing, and online updating [1]. 

In data mining, classification is one of the learning models, and the classifications are used 

to build a model that classifies the unclassified data in the dataset. These models are rules or 

patterns that connect the input data with the output target and used to predict the future output 

of the system that the data was taken from [2] and can be used in several fields such as 

marketing, advertisement, and medical science [3]. 

The data mining process steps that were explained by Berry and Linoff in 2004 [2] are in 

Figure 1. 

 

Fig. 1. Data mining process [2]. 

To create data mining models, we can use data mining algorithms. First, the algorithm starts 

by analysing the data set and extracting trends, results, and specific patterns, and these will be 

used next to determine the priorities and the parameters of the data mining model. Finally, these 

parameters are applied to the data set to find the patterns and statistical needs [4]. Selecting the 

best algorithm for the application depends on the data mining tasks, available data, data kind, 

and the size of data [5]. 

The decision tree algorithm is one of the most popular data mining algorithms because it 

has high accuracy, fast training performance, and is easy to understand. Dividing the data into 

several subsets is the primary purpose of this algorithm. The first step is to evaluate the 

attributes to determine how to divide the data between the classes. Then, this process is applied 

over all subsets until the decision tree is formed. The decision tree algorithm is a hybrid 

algorithm because it supports classification and regression tasks. The classification task can be 

used to predict continuous and categorical variables where the regression task can be used to 

predict only continuous variables. Decision tree algorithms can also be applied for association 

analysis [4]. The decision tree algorithm has many advantages over all data mining algorithms, 

which are easy to understand, quick to build the tree, and efficient to a high degree [6]. 

Naive Bayes algorithm is another data mining algorithm that achieves the learning phase 

based on evidence. This algorithm learns the evidence by counting the connection between the 

critical variables and all other variables [7]. Naive Bayes can detect the factors in a production 

line or how the products are related. However, this algorithm cannot classify nonlinearly 

separable classes correctly [4]. 

The neural network algorithm is a data mining algorithm that works by creating 

relationships between the input and output data and then uses these relationships to create 
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prediction patterns [4]. The algorithm result is difficult to explain, thus, a data mining process 

should start with decision trees, and then use the neural network algorithm [8]. 

The clustering algorithm finds the variable that classifies the data, and it is often used as a 

step in a big data analysis project. The clustering algorithm uses two methods to assign the 

clusters. The first method is the K-means method. In this method, the centre is moved to the 

mean of all assigned objects after the assigned object's phase. The second method is the EM 

method (Expectation-Maximization method), that uses a probabilistic measure to assign 

objects to the clusters and uses a bell curve for the dimension from the low centre and a standard 

deviation [4, 9].  

An association algorithm is a rule-based method in data mining. This method is used to 

discover interesting relations between the attributes in big data sets [10]. This algorithm uses 

impressive measures to identify the discoverable rules in the data set. 

The sequence clustering algorithm is a combination of two techniques, the clustering 

technique and sequence technique [4]. A time-series algorithm is a series of the data collection, 

which is collected in a timeframe. This algorithm is used to forecast the future based on history. 

This algorithm can provide many services and the most commonly used specify the seasonality 

and multiple periods. This algorithm has an excellent advantage, and it can do a great job with 

minimum information [4]. 

The data classification process divides the data into classes where each class has a unique 

symbol. The data in each class have common properties. To classify the data, we have first to 

determine how many tasks we want, and we have to determine the methods for breaking data 

into ranges, this method is related to the data that we are classifying and the project that we are 

working on. Data classification has some challenges, such as how to determine the best method 

to break and split the input data, and the challenge of determining the number of classes and 

what these classes are. 

The main goal of classifying data in data mining is to generate a predicted model, by learning 

from input data. This model can predict and divide the new input data between the classes. 

Predicted models discover relationships between the attributes that would make it possible to 

predict the outcome [11]. 

The first step in classification is prepared data in the training set, which is done in three parts 

[2]: 

• Clean the data: we have to use smoothing techniques to remove the noise from data, 

and we have to solve the missing data problem by replacing it with the commonly occurring 

value for that attribute. 

• Irrelevant attribute problem: in some databases, the attributes are not related. Therefore, 

correlation analysis is used to know if there is any connection between attributes.  

• Database normalization: The process of organizing (such as the attributes and tables) 

for reducing data redundancy and improve data integrity is called normalization.  

A decision tree is a compact data structure that can be built quickly and provides significant 

descriptions of the relationships between the input variables and the target attributes. The 

decision trees can provide accurate predictions if applied to the problems that can be 

represented with contrapuntal expressions. It can handle continuous and categorical attributes 

and is very powerful with separate attributes. The decision tree classifier has many advantages 

over all other classifiers [6]. The first advantage is that the distribution in the decision tree is 

free, consequently, there is no prior assumption about the previous data distributions. The 
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second advantage is that the decision tree does not require as much training as the other 

classifiers. Finally, the most important advantage is that the decision tree is easy to understand. 

These trees can be a set of rules that describe the connection between the input and target 

attributes. 

Sometimes the decision tree generates some unwanted and meaningless rules while it is 

growing deeps. This problem called the overfitting problem. The overfitting problem increases 

the tree size and data noise in the tree, and reduces the efficiency and accuracy of the data. To 

solve the overfitting problem, we have to use pruning methods to avoid a large tree size. There 

are two kinds of pruning methods in the decision tree. Post sorting is a kind of pruning that first 

builds the tree, and then reduces unwanted branches in the decision tree. The second kind of 

pruning method is pre-sorting. In this kind, the tree keeps on checking in each step of the 

building phase [12]. 

Each kind of pruning method has many techniques. For post sorting, there are many methods 

such as reduced error, error complexity, minimum error, and cost-based. For  pre-sorting, there 

are a minimum number of object and chi-square pruning [13]. 

Nowadays, data mining is a critical technology in the world because all the information and 

data in different fields of work such as business and science are loaded and stored in servers 

and have much valuable information that needs to be instructed. The classification task in data 

mining is useful in many fields of life, and classifying data and creating the predictive model 

allows us an opportunity to have advanced knowledge of events. In the classification process, 

we are dealing with big data sets. Therefore, we have to improve the classification algorithms 

to be able to handle this size of data and to be more comfortable for implementation. Data size 

is growing very fast every day, faster than the growth in hardware abilities. To analyse and 

classify this size of data, we have to make classification algorithms more effective in both the 

time that they take to classify the data and the data structure of the algorithms. 

The data mining process has many tasks like association, classification, clustering, 

regression, anomaly detection, and summarization. These tasks can formulate the problem and 

discover knowledge from data. Classification is the most common task in data mining. This 

technique is used to create a predictive model for future behaviour. Decision tree is the most 

common classification algorithm in data mining and is easy to implement, has a high degree of 

accuracy, and has easily recognizable patterns. 

There are many algorithms to build the decision tree; each one of them has advantages and 

disadvantages. However, in data mining, the size of data is very big, thus in the implementation 

phase, all of these algorithms struggle with the amount of data that must stay in active memory 

until the mining process ends. 

Due to the strain on computing assets caused by the massive amounts of data involved, the 

ideal classifier should take less time to complete the classification process, thus requiring less 

computer memory. In this research, we propose a new classifier to enhance classification tasks 

in data mining, and we will compare our proposed classifier with the SPRINT classifier in 

parallel computations. 

The goal of this research is to design and implement a new classifier to build the decision 

tree for mining in big data sets. The aim is to make the classification process easier and quicker 

in both parallel and serial implementation and to decrease the data size that should stay in the 

memory. In this proposed classifier, we solve the problems in the other classifiers such as 

runtime and memory requirements, and also we fix the incorrect results obtained by some 

classifiers that are proposed to improve the runtime and memory requirements. 
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In our research, we have to implement two decision tree algorithms to test their runtime and 

the memory requirements. The training data have to be datasets consisting of several attributes. 

If we download a data set from the internet, we have to make many changes to it to make it 

more suited to the parallel programs. Consequently, we created a dataset with three attributes 

and use it as a training set for the implementation phase. 

The rest of this article is as follows. In Section 2, we review the literature survey of related 

researches in the data classification algorithms. The methodology of our proposed classifier 

method and a comparison with the best previously proposed parallel classifier have been 

presented in Section 3. The simulations and experimental results of the proposed algorithm 

have been presented in Section 4. Finally, in Section 5, we discuss the conclusion of this 

research and future work. 

2. RELATED WORK 

Decision trees are one of the most crucial classification algorithms that can be constructed 

quickly and possess simple and easy-to-use models [6, 14]. The most common decision trees 

builders are CHAID (CHI-squared Automatic Interaction Detection), ID3 (Iterative 

Dichotomies 3), C4.5, CART (Classification and Regression Tree) and MARS (Multivariate 

Adaptive Regression Splines). Each one of them can be implemented in serial and parallel 

situations, but SLIQ (Scalable Classifier for Data Mining) and SPRINT (Scalable Parallel 

Classifier for Data Mining) algorithms have a perfect performance in parallel implementation. 

CHAID classifier is a decision tree builder for dependent variables proposed in [15]. This 

classifier uses CHI-squared Automatic Interaction Detection (CHAID), which is a technique 

for analysing a large amount of data by dividing it into separated subsets. The classifier then 

detects the interactions between categorized variables of a data set that are the dependent 

variables. 

The CART algorithm is the classification and regression tree published in [16]. This 

algorithm is used to build a prediction model from data. The prediction model is created by 

partitioning the data recursively and fitting a simple prediction model in each partition, then, a 

decision tree is built to represent and describe the partition graphically. 

In [17], the authors presented a framework called CLS (Concept Learning System). This 

system builds a decision tree with the minimum cost of classifying. The cost of classifying 

consists of two components: the cost of determining the property of an object and the cost of 

deciding. In [6], Ross Quinlan presented ID3, which is one of the serial algorithms developed 

from the CLS algorithm, which is used to build the decision tree invented. It handles category 

attributes only, begins with the original set as the root node, and all the attributes in the set 

belong to the same class. ID3 algorithm is suffering from an overfitting problem. To solve the 

overfitting problem, Ross Quinlan created a new algorithm in 1993 and named it the C4.5 

algorithm. 

In [18], the MARS algorithm, which is a group of techniques implemented together, was 

presented. This algorithm solves the regression-type problems and has the same purpose as the 

classification algorithms for predicting the values of the dependent (outcome values) and 

independent (income values) values. 

Most of the classification algorithms are designed for resident memory data, and this issue 

limits the ability to mine in large data sets. In [19], the SLIQ algorithm was proposed to build 

the decision tree to solve the resident memory data problem by using a new data structure. In 

[20], the authors designed SPRINT. This algorithm has the same advantage of SLIQ, but a 
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different data structure. SPRINT data structure is an attribute list with three rows, the first row 

is the attribute value, the second row is the class, and the third row is the index of the record. 

This list is sorted in the first step and only one time. 

In [21], the ScalParC algorithm (Scalable Parallel Classifier algorithm) proposed for 

enhancing the runtime and the memory required in SPRINT. ScalParC has the same data 

structure of SPRINT, and it creates a separate list for each attribute consisting of the attribute, 

the class, and the index.  It then creates another data structure to stay in the memory during 

execution time that determines to which node each datum belongs to. The difference between 

the two algorithms is that ScalParC distributes the data structure, which stays in memory 

between the processors to increase the memory request and execute the split by level not by 

not to increase the communication time [21]. However, in 2000, Kevin Bowyer has proved that 

ScalParC gives incorrect results in some situations [22]. 

CLOUDS algorithm is a breadth-first strategy to build the decision tree and uses the Gini 

index for evaluating the split points [23]. It uses either sampling the splitting method or 

sampling the splitting points with estimation method to determine the splitter at each node of 

the tree, and it evaluates the split points for categorical attributes as in SPRINT. 

In [24], the authors presented a Random Forest classifier. It consists of numbers of simple 

trees, each one of these trees is capable of producing a predicted response. For the classification 

tasks, the response of these trees has a class membership form. This task classifies the 

independent variables in categories. For the regression task, the response is an estimation of 

the dependent variable, given the predictors. Each tree in the forest has an individual 

responsibility for the queries. This response depends on the predictor values which have the 

same distribution for all the trees and are selected independently. 

The public classifier is developed from SPRINT and proposed in [25]. It has the same data 

structure, the same steps, and the phases. The main goal of the public is dealing with data that 

has much noise and suffers from missing and incorrect values, the kind of problems that can 

be fixed using the pruning method. 

3. METHODOLOGY  

The new algorithm has the same data structure for SPRINT. It creates an attribute list for 

each attribute. This list consists of three rows: the attribute, the class, and the rids. The sorting 

process is done in the first phase, and it is done once. Our algorithm also uses the hash table to 

determine the rids in each node and use the Gini index to found the best split point in each 

attribute list. 

In the first step, the parallel pattern attribute records are distributed equally over all the 

processors in SPRINT and the proposed algorithm. Thus, in this case, each processor processes 

the same number of records. Figure 2 shows parallel data placement in the proposed algorithm 

in the first step. 

In our algorithm, we distribute the hash table between the processors and create a new data 

structure called the node table. This data structure determines the number of classes in each 

node because in the calculation phase, each processor calculates (Gini) for its rids. In this phase, 

the processor needs information about the rids in each node and the number of each class in 

the node; thus, this new data structure determines the number of classes in nodes in each level 

of the tree. Figure 3 shows the new data structure in the proposed algorithm. 
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Fig. 2. The parallel data placement in the proposed algorithm. 

Fig. 3. The new data structure in the proposed algorithm. 

The proposed algorithm has many advantages over SPRINT, and it enhances many weak 

points in SPRINT. In SPRINT, the size of the hash table is equal to the size of the data set, and 

the hash table is memory resident. Each processor has to frequently connect to the hash table 

to determine the rids in each node of the tree, and the hash table must be updated after each 

split. 

The total communication overhead (per processor) in SPRINT is O(N), where N is the 

number of records in the dataset, and the total memory requirement (per processor) is O(N), as 

the size of the hash table is the same order as the size of the training dataset for the upper levels 

of the decision tree, and it resides on every processor. Therefore, SPRINT is unscalable in 

runtime and memory requirements. 

The communication cost in SPRINT is very high, especially when the data set is vast. In 

this case, the size of hash table will be a problem because it should stay in memory and the 

frequent connection with the hash table increases the runtime of the algorithm. Figure 4 shows 

the communication cost in SPRINT. 

125



IIUM Engineering Journal, Vol. 22, No. 2, 2021 Shamseen et al. 
https://doi.org/10.31436/iiumej.v22i2.1541 

 

 

 

Fig. 4. Communication cost in SPRINT. 

In the proposed algorithm, the hash table is distributed between the processors. In the 

calculation phase, each processor will connect with part of the hash table to determine the rids 

in the node and will connect to the node table to determine the number of classes in the node. 

Each processor will update its part of the hash table. 

In this way, the total communication; over each processor is O(N/P+M/2), P is the number 

of processors, and M is the size of the node table (M=number of classes* 2), in this case, we 

decrease the communication cost and the time of the update. Figure 5 shows the communication 

cost in the proposed algorithm. 

 

Fig. 5. Communication cost in the proposed algorithm. 

In SPRINT, the records in the attribute list are distributed between the processors equally 

in the first step after the sorting process, and this distribution continues until the last step. Each 

processor processes the records that were assigned to it in the first step. 

This approach caused a communication problem when the records that were assigned to 

one processor are located in more than one node. In this case, the fast processor will wait until 

the slower processor finishes its work, increasing the runtime of the classification process. 

The reason for the problem is that the process is done per level. Thus, the records in more 

than one node are evaluated to determine the best split in each node, in this case, waiting time 

will be considerable because each processor is waiting for another processor to finish its work 
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and each processor is evaluating records for more than one node; thus, the creation of a new 

node will take much more time. Figure 6 shows the communication problem in SPRINT. 

 

Fig. 6. Communication problem is SPRINT. 

In our algorithm, distributing the records between the processors is based on two rules. 

The first rule is that the distribution is done per node, not per level. Assigning the record is 

done in each node, therefore, there is no previous record assignation in the nodes and each 

processor connect with its part of hash table to determine how many records are in its 

responsibility in each node and the max number of records that each process handles is (N/P). 

In this way, the split process in each node is done entirely before going to the next node, 

and the processors evaluate the split point only for one node, and this will decrease the waiting 

time in each processor. 

To determine the best attribute for a split in the node, each processor connects with its part 

of the hash table and determine the rids that belong to the node. After determining the rids in 

the node, each processor performs calculation operations on these rids for the records in 

remaining attributes to select the best attribute for the next split step. Figure 7 shows the 

communication per node in the proposed algorithm. 

 

Fig. 7. Communication per node in the proposed algorithm. 

The size of the hash table is a critical issue when dealing with a big data set because, in 

the high level of the tree, the size of the hash table is in the same order as the size of the dataset. 

In SPRINT, the entire hash table stays in the memory of each processor, and in each 

evaluation step, the processor needs to connect to all the elements in the hash table to determine 
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the rids in each node. In our proposed algorithm, the hash table is distributed among all the 

processors; thus, the memory-resident in each processor is (N/P), and the new data structure 

also stay in memory; thus, the memory-resident of our algorithm is (N/P + M), where M is the 

size of the node table, and in each evaluate step, the processor connects only with its part of 

the hash table. Figure 8 shows the memory requirements in both SPRINT and the proposed 

algorithm. 

 

Fig. 8. Hash table (resident memory) in SPRINT and the proposed algorithm. 

In SPRINT, each processor has to stay in contact with all the hash tables in each step to 

determine the rids in each node of the tree. Therefore, all the hash tables should stay in memory 

until the build process is completed. However, in the proposed algorithm, there is no need to 

keep the entire hash table in memory, the hash table is divided between the processors, and 

each one of them connects with its part of the hash table to determine the rids in the tree node. 

Processors update the hash table in each level of the tree in the proposed algorithm after 

the split step. Because the hash table is distributed between the processors, each processor 

updates its part of the table. Figure 9 shows how hash table parts are updated in each processor. 

 

Fig. 9. Update of the hash table in the proposed algorithm. 
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Communication cost is one of the most critical issues in the classification process when 

we are dealing with big data sets. The changes that we have made in the SPRINT algorithm 

will decrease this cost and make the algorithm more scalable in runtime and memory size. The 

new data structure will make the algorithm more efficient for massive data sets, and the 

connection with the hash table will be at the minimum level.  

To execute the evaluation step, the split step per node will let the tree be constructed faster, 

and there will much less waiting time. This approach of work distribution between the 

processors will make them focus on finishing the tree node by node. 

The proposed algorithm data structure and the per-node build strategy will enhance the 

decision tree building process. The communication problem that is happening when the 

processor evaluates the records in more than one node in one time will be solved. 

4. EXPERIMENTAL RESULTS  

4.1. Evaluating the execution time 

We have implemented the SPRINT algorithm and the proposed algorithm using MPI, and 

data sets in up to (10^5) and we used six, nine, and twelve processors in a cluster with total 

processing hardware of 80 cores/10 nodes and Ram 16 GB, we got the attribute value from the 

database and created an attribute list for each attribute, then we sorted the attributes. 

After the sorting phase, we executed the steps of the algorithm. First, we found the Gini 

for each attribute, then selected the best split and the split point. Finally, we executed the split 

and repeated this circle for the remaining attributes. Figure 10 shows the execution time in both 

SPRINT and the proposed algorithm. 

 

 

Fig. 10. The execution time (in second). 
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From Figure 2, we can divide the different runtime between two algorithms into three 

parts, the first part is when data is between (500-3000), the proposed algorithm gives a better 

result than SPRINT but the range of execution time is not significant, the second part when 

data is from (3000-6000), proposed algorithm also gives a better result than SPRINT and the 

range in execution time is bigger than the first part. We can see that every time the size of the 

data gets bigger, the difference range in runtime between the algorithm gets better and the 

proposed algorithm gives a better result. 

In SPRINT, when the data size gets bigger, the hash table does not fit in memory, so we 

have to do many rounds to update the hash table, these rounds take much time and increase the 

communication cost because the next step is dependent on the hash table rids to determine the 

node for each attribute value. 

In our algorithm, a hash table is distributed between the processors, so even if the data size 

gets bigger, the hash table in each processor fits in memory, and we need no more rounds. The 

results of implementation show that the proposed algorithm is faster than SPRINT in small and 

big data sets. Table 1 shows the results of implementation. 

Table 1: Comparing the runtime of SPRINT and the proposed algorithm (in second).  

Data Size 

(records) 

SPRINT 6 SPRINT 9 SPRINT 12 
My 

algorithm 

6 

My 

algorithm 

9 

My 

algorithm 

12 

500 0.00 0.00 0.00 0.00 0.00 0.00 

1500 0.00 0.00 0.00 0.00 0.00 0.00 

3000 0.10 0.00 0.00 0.00 0.00 0.00 

6000 0.29 0.08 0.00 0.12 0.00 0.00 

10000 0.72 0.3 0.12 0.34 0.18 0.00 

150000 1.12 0.51 0.22 0.6 0.24 0.12 

20000 2.52 0.96 0.3 1.12 0.39 0.22 

30000 4.48 1.98 0.72 2.28 0.82 0.31 

 

4.2. Evaluating the memory requirement 

In SPRINT, the size of the hash table is equal to the order of the size of the training dataset 

for the upper levels of the decision tree. It is resident in all processors and the number of 

processors does not have any effect on the size of the hash table. Thus, when we are dealing 

with massive data sets, the hash table size is a series problem. 

In the proposed algorithm, the hash table is distributed between the processors, therefore, 

if the data set order is O(N), then the hash table in each processor is O(N/P); by this solution, 

we solved the memory requirement problem. Figure 11 shows memory requirements in each 

processor for both algorithms. 
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Fig. 11. The memory requirement in each processor. 

Data size is a severe problem because hardware cannot handle the fast growth of data size, 

therefore, developing the existing classification algorithms and making them able to handle a 

huge data size, without the need of potent hardware, is very important. Table 2 shows the 

memory requirement in SPRINT and our algorithm. 

Table 2: Comparing the memory requirement by the record in each processor.  

Data Size 

(records) 

My 

algorithm 

6 

My 

algorithm 

9 

My 

algorithm 

12 

SPRINT 

500 88 60 46 500 

1500 254 171 129 1500 

3000 504 338 254 3000 

6000 1004 671 504 6000 

10000 1671 1116 838 10000 

15000 2504 1671 1254 15000 

20000 3338 2227 1671 20000 

30000 5004 3338 2504 30000 

 

In the previous experiment, the proposed algorithm showed a better result than SPRINT. 

It needs a smaller memory size per processor than SPRINT. In our algorithm, the hash table 

should stay in memory in all the steps, because it is essential to determine the record rids in 

each node. In SPRINT, the hash table in each node has the same size order as the data set, thus, 

if the dataset is huge, SPRINT suffers from a memory requirement problem and needs more 

time to complete the classification process. However, in our algorithm, hash table size is 
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distributed equally among the processors. Thus, each processor has (N/P) records which stay 

in memory, and the node table also stays in memory and has size M which is the number of 

classes, therefore, the memory requirement for our algorithm is (N/P +M). 

5. CONCLUSION AND FUTURE WORK 

A decision tree is one of the most popular algorithms in data mining. It has many advantages 

such as being easy to understand, having a high degree of accuracy, and building the tree very 

quickly. The decision tree algorithm can handle both categorical and continuous attributes. This 

algorithm classifies the data set records and builds a predictive model that can be used to predict 

future outputs. 

There are many techniques to build the decision tree such as C4.5, ID3, CART, and CHAID. 

Each one of them has a unique method and has many advantages, which make the building 

process easier and more efficient. In data mining, the decision tree building algorithms deal 

with very big data sets; thus, these algorithms must be able to handle this size of data and 

consider the ability of the computer's hardware. 

Most of the decision tree algorithms are designed for resident memory data, this approach 

decreases the ability of these algorithms when the data sets are significant. Therefore, many 

studies have been done in this area, and many algorithms have been proposed to solve the 

limited ability of the existing algorithms to handle big data sets. SPRINT algorithm is designed 

to solve the resident memory problem using a new data structure, which decreases the resident 

memory data size and makes the parallel designing of the decision tree easier. 

In this paper, we proposed a new parallel builder for the decision tree, which solves the 

runtime problem and the memory requirement problem in other algorithms. We tested the new 

algorithm using MPI and compared the results with the best parallel algorithm, SPRINT. 

Our algorithm showed a better result than SPRINT with different sizes of data sets. It also 

showed a better result in runtime because the communication cost of the split step was 

decreased from O(N) to O(N/P +M/2) after we distributed the hashtable among the processors. 

Distributing the hashtable also solved the memory requirement problem because all the 

processors share the size of the dataset equally. In this case, the algorithm will not suffer from 

overfitting problems when the size of the hashtable is too big and there will be no need for 

many rounds to update the hashtable. 

Also in SPRINT, the initial distribution of the attribute lists records between the processors 

was not changed. This approach caused communication problems when the rids for one 

processor existed in more than one node. However, in the proposed algorithm, we solved this 

problem by building the tree node by node; thus, in the evaluation step, each processor 

evaluated its rids in one node, in this case, the process completed the node and went to another 

node.   

By evaluating the implementation results for SPRINT and the proposed algorithm, we can 

see that the proposed algorithm is better than the SPRINT in runtime and memory 

requirements. These advantages make the proposed algorithm more useful when the size of the 

dataset is significant. Selecting the best algorithm to build the decision tree is based on many 

rules, the size of the dataset is one of the critical issues that should be considered in the selection 

process. There are many algorithms that are very useful and powerful when the amount of data 

is not very big such as C4.5 and CART, but, when the size of dataset is big, SPRINT and the 

proposed algorithm are better than other algorithms. The new data structure of the proposed 

algorithm helps to handle this big size, and it is even better than the SPRINT data structure. 
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In parallel computing, load balancing between the processors is essential, and the data load 

must be divided equally between the processors, otherwise, some processors will work more 

than others. In the decision tree, some nodes reach a dead end, and this happens when all the 

records in the node are related to one class. In this case, there is no need to evaluate and process 

the records in these nodes. Our algorithm suffers from an unbalancing problem when some 

nodes reach a dead end, and some processors are processing more than the others, which 

increases the runtime of the algorithm. For the future work, we will solve the unbalancing 

problem when some nodes reach a dead end and divide the work equally between the 

processors to decrease the runtime. This step will enhance the building process and make the 

proposed algorithm more powerful and more suitable for massive data sets. 

Nowadays, data scientists are more interested in deploying emerging and strong deep 

learning (DL) algorithms [26-30]. DL can perform big data analytics efficiently. It can be 

widely utilized for handling some traditional problems in Big Data Analytics such as data 

labelling, semantic indexing, probing complex and nonlinear patterns from giant volumes of 

data, fast and efficient information retrieval, and simplifying discriminative tasks. As a result, 

it would be a progressive solution to our work in the future. 
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