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ABSTRACT:  Water remains one of the most essential natural resources. With the ever-
increasing population, the demand for water across various sectors, including agriculture, 
industry, and power, as well as the growing prevalence of pollution, has led to a significant 
strain on water supplies. The availability of fresh and usable water is becoming 
increasingly limited, making quality monitoring and analysis crucial for sustainable use 
and environmental protection. Traditional water quality monitoring techniques involve 
manual sampling, testing, and investigation, which may not always be reliable and are 
often inefficient in providing early warnings of water quality deterioration. However, with 
the emergence of machine learning (ML) and Internet of Things (IoT) technologies, the 
process of water quality monitoring and analysis has become more efficient, accurate, and 
cost-effective. ML algorithms can analyze large volumes of water quality data, enabling 
data-centric approaches to designing, supervising, simulating, assessing, and refining 
various water treatment and management systems. This review paper provides an 
overview of the past and current applications of machine learning and IoT in water quality 
monitoring and analysis. Long-term cost savings can be seen in different ways as reduced 
labor costs, lower operational costs, early detection and intervention prevent costly repairs 
and emergencies, minimized infrastructure costs, distributed IoT sensors reduce the need 
for extensive physical infrastructure, optimized resource allocation and efficiency 
improvements with IoT and Machine Learning in water quality monitoring can be 
highlighted in the following points, real-time monitoring: immediate data analysis allows 
for prompt adjustments and decision-making, enhanced accuracy, advanced sensors and 
algorithms improve data precision and reliability, scalability, systems can be easily 
expanded or adapted to meet evolving needs, predictive maintenance, automated systems 
proactively address issues before they escalate, reducing manual oversight. The paper 
explores various ML algorithms, including supervised and unsupervised learning and deep 
learning, along with their applications, and discusses the use of IoT sensors for real-time 
monitoring of water quality parameters such as pH, dissolved oxygen, temperature, and 
turbidity. 
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1. INTRODUCTION 
Water is universally recognized as one of the most essential resources for life, with its 

quality and availability being intrinsically linked to global living standards. The United 
Nations identifies the provision of clean water and sanitation as a core goal for global 
sustainable development, noting that over 3 billion people lack adequate monitoring, raising 
concerns about the quality of the water they rely on [1]. Similarly, the World Health 
Organization (WHO) estimates that approximately 829,000 diarrheal deaths each year can 
be attributed to microbiologically contaminated drinking water [2]. 

Water quality is increasingly compromised by excessive pollutants, primarily from 
human activities, including the over-exploitation of natural resources, industrialization, 
urbanization, agriculture, and population growth. In agricultural settings, fertilizers and 
pesticides can be washed into rivers by rain, leading to pollution. Industrial waste products, 
such as those from chemical factories, are often disposed of in rivers and lakes, further 
contaminating these water bodies, including open oceans [3]. Factories that use river water 
for power generation or machinery cooling can increase water temperature, reducing 
dissolved oxygen levels and disrupting aquatic ecosystems. Surface water bodies, 
particularly rivers, are highly susceptible to waste disposal [4,5]. 

This problem is exacerbated by the uneven distribution of rainfall, resulting in floods and 
droughts, and by negligence in water management, which further aggravates contamination. 
Additionally, the hydrochemistry of open water systems is influenced by a range of factors, 
including climatic conditions, soil-rock types, and human activities within watersheds, all 
of which contribute to the growing challenge of maintaining water quality [6]. 

To reduce water pollution, alleviate stress on water resources, and conserve these 
essential resources, real-time monitoring of water quality parameters has become 
increasingly vital. Water quality is assessed by measuring its physical, chemical, and 
biological conditions to determine how well it meets the needs of humans and ecosystems. 
Monitoring critical parameters helps identify deviations in water conditions and provides 
early warnings of emerging hazards [4, 7]. Traditional monitoring methods, which involved 
manual sampling, testing, and investigation, were limited by lengthy processes. These 
methods have evolved towards real-time data collection and subsequent analysis to enable 
prompt remedial action. 

The evaluation of water quality can vary depending on the parameters considered, even 
when relevant standards are maintained. However, considering every parameter is not 
always viable due to cost constraints and technical challenges [8, 9]. In recent times, the 
development and widespread adoption of IoT and machine learning have emerged as 
substantive technological solutions for effective water quality monitoring and analysis. 

With IoT, interconnectivity and the embedding of computing devices into everyday 
environments facilitate the seamless transaction and transfer of data. Machine learning, on 
the other hand, leverages data through algorithms to predict new information. The increased 
adoption of these technologies across various domains can be attributed to their ability to 
produce precise results and extend easily into customizable environments. In recent years, 
IoT and machine learning have shown remarkable adaptability in the fields of environmental 
science and engineering, offering promise for generating more accurate evaluation results, 
even when dealing with the complexities of water quality analysis and assessment [10]. This 
paper discusses the various ways in which IoT and machine learning have been implemented 
in different environments for water quality monitoring. 
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2. IOT (INTERNET OF THINGS) 
The Internet of Things (IoT) represents a significant technological advancement, with 

extensive applications across various fields, including science, engineering, medicine, and 
technology. Its widespread adoption in industrial implementations is largely due to its ability 
to integrate communication and embedded technology into diverse applications. IoT 
functions by interconnecting physical computing devices within networks, enabling 
seamless data collection and transaction with minimal human intervention [11]. The 
capability of real-time data collection and reporting, along with the accessibility of this 
information on internet-connected devices, has revolutionized strategies and decision-
making processes, leading to greater efficiency and impact. This technology has paved the 
way for the creation of automated and 'smart' systems across sectors, ranging from 
households and office spaces to transportation systems, infrastructure, healthcare, and water 
distribution systems. 

An IoT system primarily comprises sensors, processors, connectivity, and a user 
interface. Wireless technologies such as Wi-Fi, Bluetooth, ZigBee, and RFID maintain 
interconnectivity between devices and the internet. Data is collected, stored, and analyzed 
using cloud services, while smartphones and computers function as the user interface and 
the central hub or remote control for IoT [12]. The architecture of IoT is typically divided 
into three layers: the physical layer (data collection subsystem) where sensors gather data 
from the environment, the network layer (data transmission subsystem) where data is 
converted into digital streams for processing, and the application layer (data management 
subsystem) that delivers specific services to users. Some publications further divide this 
architecture into four components, separating the network layer into network connectivity 
and cloud server [13, 11]. 

IoT communication can occur in two forms: device-to-device and device-to-cloud. One 
of the commonly used communication platforms is Wireless Sensor Networks (WSNs), 
which utilize self-sufficient, low-energy sensor nodes capable of measuring and recording 
environmental conditions. Each sensor node typically includes a power source, a 
microcontroller, a wireless radio transmitter, and a collection of environmental sensors 
(such as humidity, pressure, and temperature). Figure 1 illustrates the basic architecture of 
an IoT system. 

 
Fig.1: Basic architecture of an IoT system 

While the initial setup costs for IoT and ML in water quality monitoring can be substantial, 
the long-term benefits far outweigh these expenses. The investment leads to significant cost 
savings through reduced labor and operational costs, minimized infrastructure needs, and 
optimized resource allocation. Enhanced accuracy, real-time monitoring, and predictive 
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maintenance further contribute to long-term efficiency and financial savings, making IoT 
and ML technologies a valuable investment for sustainable water management. Automated 
systems predict potential issues before they escalate, reducing the need for manual oversight 
and extending the lifespan of equipment. This proactive approach prevents costly 
breakdowns and ensures system longevity. 
 

2.1  IOT In Water Quality Monitoring 
The application of IoT in water quality monitoring has significantly increased due to its 

efficiency and capability, with configurations varying based on environmental conditions 
and analysis requirements. A common application format is the Smart Water Grid (SWG), 
which integrates IoT technology into water distribution systems for comprehensive 
monitoring [14]. The development and implementation of SWG gained momentum in the 
2000s, driven by global water-based companies seeking more sophisticated water 
management strategies [15]. SWG integrates smart water meters that enable remote readings 
of water consumption, replacing traditional water infrastructure. Sensor nodes are deployed 
along pipelines to detect leaks, while water quality sensor nodes are placed in tanks or along 
pipes to monitor chemical parameters such as pressure, flow, temperature, pH, conductivity, 
and turbidity. On the utility side, intelligent processes are employed to analyze and utilize 
the data collected by these sensing devices. 

The SWG concept is closely related to the Smart Water Quality Monitoring System 
(SWQMS), which emphasizes the integration of intelligent water information systems 
through IT convergence into existing water infrastructure, resulting in an advanced smart 
management system. A similar concept is the Online Water Quality Monitoring (OWQM) 
system, which uses a network of online automatic monitoring devices, transmission 
networks, and business software for data analysis, forming the foundation of the original 
SWQMS concept. OWQM is designed to measure physicochemical parameters in real-time 
across various water sources, such as rivers, streams, lakes, oceans, groundwater, industrial 
wastewater, and urban drainage. 

IoT applications in water quality monitoring can be tailored for specific purposes, such 
as creating a smart irrigation system that schedules irrigation based on environmental 
conditions or designing a robotic fish device to monitor debris in aquatic environments 
[16,17,18]. However, ongoing initiatives continue to focus on enhancing the monitoring 
process, improving information sharing, and refining decision-making processes. 

The Internet of Things (IoT) introduces significant security and privacy challenges due 
to the vast number of interconnected devices, the diversity of those devices, and the 
sensitivity of the data they collect and transmit. IoT devices are often limited in 
computational power and storage, making it difficult to implement robust security measures.  

 
2.1.1 Key security challenges include 
Data Privacy: IoT systems often collect sensitive personal or environmental data, raising 

concerns about unauthorized access, misuse, or exposure of this data. Authentication and 
Authorization: Ensuring that only authorized users and devices can access the IoT network 
is critical, yet difficult due to the diversity and scale of IoT environments. Data Integrity: 
The integrity of data transmitted between devices must be protected to prevent tampering or 
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corruption. Network Security: IoT systems are vulnerable to a range of network-based 
attacks, including Distributed Denial of Service (DDoS), man-in-the-middle (MitM) 
attacks, and eavesdropping. Physical Security: Many IoT devices are deployed in unsecured 
environments, making them susceptible to physical tampering. and privacy in IoT systems 
and propose advanced security measures for the preferred system. 

The literature on IoT security highlights the significant challenges posed by the 
complexity and scale of IoT systems. While traditional security measures provide a 
foundation, they often fall short in addressing the unique demands of IoT environments. 
Advanced security strategies, such as lightweight cryptography, AI-driven anomaly 
detection, decentralized models, and privacy-preserving data analytics, offer promising 
solutions to enhance the security and privacy of IoT systems. By implementing these 
measures, IoT systems can achieve long-term resilience, ensuring that the benefits of IoT 
and machine learning in applications like water quality monitoring are fully realized while 
minimizing security risks. 

 

2.2 Review Findings 
Hamid et al. (2020) proposed a simplified architecture for a Smart Water Quality 

Monitoring System (SWQMS) designed to monitor and evaluate water quality in swimming 
pools, focusing on factors influencing pH and temperature [19]. The system utilizes a 
NodeMCU V3 processing unit with an ESP8266 Wi-Fi module, connected to a pH sensor 
and a DS18B20 temperature sensor, enabling real-time monitoring of pH and temperature. 
The data is monitored through the IoT cloud platform (Ubidots app). The study also 
investigated the significant factors influencing pH and temperature, revealing that the time 
of day did not affect pH but did influence temperature. 

Similarly, Pasika et al. (2020) proposed a Water Quality Monitoring (WQM) system 
that measured the pH and turbidity of water, the water level in tanks, and the temperature 
and humidity of the atmosphere to assess water conditions in tanks [20]. Aiming for a low-
cost architecture, the project selected an Arduino Mega MCU with an ESP8266 Wi-Fi 
module, along with pH, turbidity, ultrasonic, and DHT-11 (temperature and humidity) 
sensors. The ThinkSpeak mobile application was used for monitoring and cloud storage. 

Geetha et al. (2016) summarized current developments in smart water quality 
monitoring and suggested an IoT-based approach that is both power- and cost-efficient for 
in-pipe water quality monitoring [13]. The proposed system includes sensors directly 
connected to a microcontroller with an integrated Wi-Fi module. The microcontroller 
analyzes the data sent to the cloud (Ubidots network) and notifies users of any deviations 
from the norm. Although power management is a concern, the system uses Wi-Fi for 
communication, given its existing infrastructure and intended use for monitoring home 
water quality. The system records data in the cloud for further analysis and monitors 
conductivity, pH, turbidity, temperature, and water level. Additionally, when parameters 
exceed a threshold limit based on WHO criteria, the cloud is designed to send alert SMS 
texts. 

Gupta et al. (2018) introduced a smart water management system for housing 
societies, which uses an ultrasonic water level sensor and a turbidity sensor to monitor water 
levels and quality [10]. Residents can check the water level and quality in real-time via a 
smartphone app, accessing data broadcasted to the cloud by the sensors. The system also 
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allows users to control the motor remotely via the app. The controller is a Raspberry Pi, and 
the data transfer protocol is MQTT (Message Queuing Telemetry Transport). The system is 
low-cost, easy to install, and reliable, making it suitable for use in older buildings without 
extensive modifications. It offers full automation and is a robust solution for smart water 
management. 

Ranjan et al. (2020) leveraged IoT technology to develop a rainfall harvesting system 
that included both a collection or catchment area, such as a roof, and a storage system [21]. 
After analyzing existing systems, the authors concluded that users lacked awareness of 
rainfall, water quality, and water distribution. To address this, they proposed an IoT-based 
solution to establish a direct connection between users and the rainwater collection device. 
The model featured a building with two separate tanks for acidic and potable water, 
equipped with a raindrop detection sensor installed on the roof. A pH sensor measured the 
rainwater’s acidity, and a servo motor on a hinge directed the water to the appropriate tank. 
The data was uploaded by a NodeMCU with a Wi-Fi module to a webpage created using 
HTML, CSS, and a PHP script, hosted by a free hosting service. The project aimed to ensure 
rainwater quality and provide users with essential data accessible via desktop or mobile 
devices. 

Das and Jain (2017) developed a water quality monitoring system that used sensors 
to measure pH, conductivity, and temperature [12]. The system wirelessly transmitted data 
from the sensors to the microcontroller via a ZigBee module, which then sent the data to a 
smartphone or PC using a GSM module. Additionally, the system included proximity 
sensors that could notify authorities of water pollution via the GSM module. The 
microcontroller processed, analyzed, and transmitted the data, proving to be an efficient, 
low-cost, real-time water quality monitoring system. This system could help officials 
monitor water pollution and prevent waterborne diseases. It was easy to install, and the 
monitoring tasks could be performed by less-trained individuals. 

Ramesh et al. (2017) developed an IoT-based system to detect environmental 
parameters and monitor water quality and contamination levels [22]. The system included 
sensors for hydrocarbons, chemicals, and metal content in a soil probe to monitor soil 
pollution, as well as pH, conductivity, dissolved oxygen, and turbidity sensors for water 
quality monitoring. This method could significantly impact land restoration projects in India 
and assist authorities in managing waste in affected areas. An IoT architecture was proposed 
to address cleanliness, waste management, and health concerns in a community. The 
platform featured three applications: real-time notifications for water quality, progress 
tracking of land recovery, and health statistics monitoring. Multiple sensors were placed in 
heavily polluted water resources, and the data collected was sent to a data aggregation 
system, which identified the safest water resources and alerted residents of potential risks. 
Similarly, the soil quality monitoring system measured the reduction of heavy metal content 
in the soil and notified the community. The system’s capability for edge computing reduced 
bandwidth usage and computation overhead. An app was also implemented to transmit real-
time health statistics from smartphones to servers, analyzing pollutants responsible for 
specific diseases. By integrating these three systems, the community could be informed 
about safe resources and health issues caused by polluted environments. 

Maindalkar and Ansari (2015) proposed and discussed the design of a smartphone-based 
aquatic debris monitoring robot [23]. The robot integrates an Android smartphone with a 
robotic fish to monitor debris in various environments, accurately detecting debris while 
overcoming challenges such as wave impact, energy consumption, and irregular debris 
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entrances. The paper presented lightweight computer vision algorithms for image 
processing, including image registration and adaptive background subtraction, to address 
these challenges. The robotic fish is powered by two NiMH batteries and communicates 
with a floating platform via a fiber-optic tether to relay camera, sensor, and control signals. 
Additionally, the paper explained the interfacing of sensors, DC motors, and Bluetooth with 
an Arduino (ATmega328) processor for real-time debris detection. The smartphone-based 
aquatic robot can adaptively configure the camera orientation and monitor the time interval 
for the next round using a coverage-based rotation scheduling algorithm. 

Wireless sensor networks (WSNs) are commonly used alongside IoT in data acquisition 
and environmental monitoring systems due to their ease of installation, low cost, and easy 
maintenance [24]. Faustine et al. (2014) presented a WSN system prototype built for water 
quality monitoring in the Lake Victoria Basin [25]. The system uses an Arduino 
microcontroller, water quality sensors, and a wireless network connection module to detect 
and transmit real-time data on water temperature, dissolved oxygen, pH, and electrical 
conductivity. This data is made available to stakeholders through a website and mobile 
platforms in graphical and tabular formats. The core component of the system prototype, 
the WSN sensor node, is equipped with sensor and microcontroller units, a GPS receiver, a 
power supply, and an RF transceiver. The system uses four sensors to monitor different 
aspects of water quality but is expandable to accommodate additional sensors as needed. 
With a low-cost gateway module, the proposed prototype is suitable for long-term outdoor 
deployment and offers a software module that allows users to visualize WSN data without 
needing specific software installation. 

Kamaludin et al. (2017) proposed an IoT-based water quality monitoring (WQM) system 
that combines a Radio Frequency Identification (RFID) system, a WSN platform, and 
Internet Protocol (IP) communication [26]. They utilized a 920MHz frequency for WSN 
communication in vegetation areas and measured pH levels and ambient temperature using 
analog sensors. The system uses the Digi Mesh protocol instead of the ZigBee protocol for 
better signal attenuation. The WSN platform allows RFID tags to communicate with the 
system gateway, powered by a mains-supplied power adapter. The sensor node, powered by 
Nickel Zinc (Ni-Zn) rechargeable batteries, includes a new circuitry design based on an 
Arduino Uno board with a double-layer PCB layout that measures pH levels and ambient 
temperature. The network gateway provides data to cloud storage via TCP/IP 
communication and is connected to the internet using an IoT module, Arduino Ethernet 
Shield. They also developed an Android OS mobile application for online monitoring, with 
an alarm-triggering system built in PHP to detect pH threshold values and generate alert 
sounds on users' mobile devices. 

Myint et al. (2017) presented a smart water quality monitoring (SWQM) system for IoT 
environments, utilizing a reconfigurable sensor interface device [27]. The system collected 
real-time water data across five parameters from multiple sensors, which were computed on 
an FPGA board using VHDL and C programming languages. The data was then transmitted 
wirelessly to a monitoring PC through ZigBee communication and displayed using Python 
code on a Grafana dashboard. The proposed system included an RF module, an FPGA 
board, an ultrasonic sensor, a pH sensor, a digital temperature sensor, a turbidity sensor, and 
a CO2 sensor. The smart WQM system reduces power consumption, outperforming 
conventional microcontroller-based WSNs. The system demonstrated reliability and 
feasibility, with the potential to extend its coverage range in future WSN networks. 
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Beri (2015) outlines a low-cost wireless network system for automatically monitoring 
water quality using sensor technology, artificial intelligence techniques, and a database 
management system [14]. The system is scalable for public water distribution systems and 
adaptable for smaller settings like housing societies. The paper describes the use of a 
wireless sensor network (WSN) to collect real-time data on water quality parameters such 
as pH, temperature, dissolved oxygen, and conductivity. The system is powered by a 
PIC16F886 nano-watt MCU, with sensors sending data to the ADC, which is then 
transmitted via serial communication to a Zigbee modem and displayed on an LCD. The 
paper examines the challenges of detecting pH and the need for temperature correction and 
suggests using a single SIM card for monitoring, while also discussing potential issues with 
the GSM module. 

Yasin et al. (2019) designed and implemented a new irrigation system using the Arduino 
Mega 2560 microcontroller and SIM900 GSM Shield [28]. This system allows for remote 
control and monitoring of the irrigation process. Moisture sensors placed in the soil 
automatically irrigate plants when the soil becomes dry, and the system can be controlled 
via SMS. In case of rain, a raindrop sensor module stops the irrigation process. The proposed 
system aims to promote plant growth while reducing water, labor, and time consumption, 
demonstrating a 60% reduction in water usage compared to conventional irrigation methods. 
The system is compatible with any mobile phone that supports SMS and allows for the easy 
addition of multiple phone numbers. However, the cost of purchasing, setting up, and 
maintaining the irrigation system’s automatic equipment was noted to be high. 

Using IoT and remote sensing (RS) technology, Prasad et al. (2015) developed a smart 
water quality monitoring system for Fiji [29]. The system uses RS technology to measure 
temperature, conductivity, pH, and oxidation-reduction potential (ORP). Anomalous 
measurements trigger an alert via IoT technology, indicating potential water pollutants. 
False positives are recorded but not treated as alerts. The system includes sensors, ADC, 
microcontroller, SD storage, and a GSM module. Data can be stored onboard or sent to a 
cloud server for analysis. Power conservation is critical, and the system design incorporates 
sleep mode and turns off idle modules to extend battery life. The system was tested on four 
different water sources to validate measurement accuracy, with results matching 
expectations. The system successfully used GSM technology to send alerts based on 
reference parameters to users for immediate action. The collected parameter references will 
be used to build classifiers for automated water analysis using neural network analysis. 
Overall, the system proved to be accurate, consistent, and an excellent contender for real-
time water monitoring solutions. 

Ali et al. (2022) designed a smart water grid (SWG) network capable of routing and 
monitoring water supply using fog computing, IoT, long-range wide-area network 
(LoRaWAN), and software-defined networking (SDN) [30]. The proposed architecture uses 
fog servers and controllers to collect and process data from sensors in the water grid, 
employing LoRaWAN technology for data communication to extend battery life. SDN is 
used within the LoRaWAN network to optimize the routing process. The architecture 
features a physically and logically distributed SDN approach, with controllers deployed at 
the fog layer for local control and a single controller for global control. The feasibility of 
the proposed architecture is evaluated using delay and network throughput metrics under 
the Mininet emulator, with experimental test-bed evaluation planned for future work. The 
paper highlights several advantages of the architecture over existing ones, including power 
consumption, security, privacy, and low-latency burst and leak detection. The use of the 
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LoRaWAN protocol reduces power consumption of SWG devices, enabling longer 
operation. Data is stored and analyzed at the fog server to preserve user privacy, with only 
critical events transmitted to the cloud server. Low-latency burst detection is achieved by 
processing data at the network's edges, providing low latency between SWG devices and 
the cloud. 

Baanu et al. (2021) proposed an IoT-based system to monitor residual chlorine 
concentration in water distribution systems [11]. The study favored flow-through-type 
chlorine sensors for measuring residual chlorine and identified LoRa technology as ideal for 
long-range data communication. The paper also discussed various communication 
technologies suitable for real-time monitoring, including Wi-Fi, Zigbee, and LoRa, noting 
that Zigbee is preferred for short-range communication, while LoRa is better for remote 
monitoring over wide areas. Additionally, the paper explored optimal sensor placement, 
identifying three key locations for monitoring water quality: (i) where water exits the 
treatment facility, (ii) areas within the distribution system prone to contamination, such as 
corroded pipes or the ends of branch pipes, and (iii) points that are representative of overall 
water quality in the distribution system. The proposed system enhances timely decision-
making, enables more efficient management of water resources, and acts as an early warning 
system. 

In a review publication, Dong et al. (2015) surveyed research on Smart Water Quality 
Monitoring (SWQM) systems up to 2014 [15]. The authors examined three subsystems of 
SWQM: data management, data transfer, and data gathering. They discussed the selection 
of water quality parameters, monitoring technology, sampling sites, and frequency. 
Additionally, they explored network architecture and communication management for data 
transmission, as well as storage, analysis, and prediction for data management. The authors 
identified challenges and proposed future research directions for each subsystem, 
emphasizing the need for improved management strategies to develop reliable SWQM 
systems capable of monitoring large areas. The article also suggested different focuses for 
monitoring drinking water, wastewater, and environmental water quality. 

Subsequently, Lalle et al. (2021) presented a survey of wireless communication 
technologies for Smart Water Grid (SWG) applications [31]. The authors noted that 
commonly used technologies such as cellular networks, ZigBee, 6LoWPAN, Bluetooth, and 
Wi-Fi suffer from issues related to power consumption, communication range, and 
penetration. To overcome these challenges, they recommended Low Power Wide Area 
Networks (LPWANs) due to their long-range communication, low power consumption, and 
excellent penetration capabilities. The article discussed the deployment of LPWANs in 
SWG applications such as water leak detection, water quality monitoring, and smart water 
metering. It also provided recommendations for advancing SWG, including addressing 
challenges and exploring research directions to enhance LPWAN performance. 

Furthermore, Zainurin et al. (2022) conducted a review study on the overall development 
of water quality monitoring methodologies [32]. The study included a comparison of 
traditional methods with current innovations and reviewed regional variations in approach. 
Both within and beyond IoT, the study extensively examined various methods for 
monitoring water quality, including cyber-physical systems (CPS), electronic sensing, 
virtual sensing, and optical techniques. The study confirmed the relevance and suitability of 
CPS for water quality monitoring, highlighting its ability to connect the physical world 
(sensors, environment, humans) with the cyber world (software, data). This smart system 
allows real-time monitoring, early warnings for water quality issues, pollution detection, 
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and improved sensitivity through potential future integration with advanced optical 
techniques. 

Finally, Yasin et al. (2021) reviewed the use of IoT communication technology for water 
management and quality control [17]. The authors examined various components and 
techniques for implementing IoT in water management, including sensors, controllers, and 
IoT platforms. They compared different parameters used to measure water properties and 
evaluated the pros and cons of each technique. The review found that all the studies 
reviewed had achieved optimal solutions for reducing water waste in both private and public 
agricultural sectors by relying on IoT. The paper compared different studies based on 
microcontroller type, embedded programming language, sensors used, communication 
module, and protocol adopted. Researchers used a variety of microcontroller types, 
embedded programming languages, sensors, and communication modules, such as ZigBee, 
GSM, Raspberry Pi with built-in Wi-Fi, Arduino Ethernet Shield, and ESP8266. The paper 
concluded with recommendations for future research to enhance the performance of IoT-
based water management systems. 

3. MACHINE LEARNING (ML) TOOL 
Machine Learning (ML), a crucial tool within the field of Artificial Intelligence (AI), has 
evolved into a powerful means of analysis, development, and implementation by leveraging 
Big Data [33]. ML excels at identifying significant patterns and correlations, making 
accurate predictions, and adapting independently as new data becomes available. Key steps 
before applying ML include data collection, algorithm selection, model training, and model 
validation. 
 
Choosing the right algorithm is vital for any ML experiment. ML can be broadly categorized 
into two main types: supervised and unsupervised learning. Supervised learning involves a 
labelled dataset where the outputs are known, whereas unsupervised learning uses un-
labelled data for training. Supervised learning is further divided into classification and 
regression. Classification is used for qualitative (categorical) datasets to assign labels, while 
regression deals with quantitative (continuous) data to estimate relationships between 
outputs and attributes for predictions. 
 
The primary steps in an ML process include data processing, model training, and model 
evaluation. In unsupervised learning, the aim is to resolve various pattern recognition issues 
by categorizing data into distinct groups based on features, using techniques like 
dimensionality reduction and clustering. Unlike supervised learning, the number of groups 
and their significance in unsupervised learning are not predefined. Hybrid learning methods, 
such as semi-supervised learning, use both labelled and unlabelled data. 
Common ML algorithms include, but are not limited to, Random Forest (RF), Logistic 
Regression (LR), Support Vector Machine (SVM), Artificial Neural Networks (ANN), and 
k-Nearest Neighbors (KNN). 
 
In the context of water quality monitoring, ML is highly effective for analyzing large 
datasets to predict patterns and identify potential issues. Historical data analysis is crucial 
for forecasting water quality conditions and detecting problems. For example, predictive 
models can identify areas where water quality may be impacted by agricultural runoff or 
wastewater discharge, enabling targeted interventions and damage prevention. Additionally, 
ML models can facilitate real-time water quality monitoring, allowing for the rapid 
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detection of parameter changes that can signal contamination or worsening water conditions. 
Overall, ML and AI play a significant role in advancing water quality monitoring and 
management. 
 
Machine learning (ML) has emerged as a transformative tool in environmental monitoring, 
particularly in the assessment of water quality. The use of ML in this domain leverages the 
ability to process and analyze large datasets, providing predictive insights and enabling real-
time monitoring. The integration of ML with water quality assessment promises to enhance 
the efficiency, accuracy, and timeliness of monitoring efforts. However, despite its potential, 
several challenges and limitations remain, which need to be critically examined. 
 
3.1 Advantages Of ML In Water Quality Assessment 
 
Machine learning offers several key advantages for water quality assessment: 
Predictive Accuracy: ML models, particularly those based on deep learning, can provide 
high levels of predictive accuracy by identifying complex patterns in water quality data that 
traditional statistical methods may miss. Techniques like Random Forest, Support Vector 
Machines (SVM), and Artificial Neural Networks (ANNs) have been successfully used to 
predict various water quality parameters, such as pH, turbidity, and dissolved oxygen. 
 
Data-Driven Insights: The ability of ML to analyze vast amounts of data from diverse 
sources—such as sensors, satellites, and historical records—enables the extraction of 
meaningful insights, leading to a better understanding of water quality dynamics. This is 
particularly beneficial in regions with limited access to real-time data. 
Real-Time Monitoring and Decision-Making: The integration of ML with IoT systems 
allows for continuous monitoring and real-time analysis of water quality, enabling timely 
interventions and reducing the risk of pollution-related incidents. 
Cost-Effectiveness: Over time, the automation and predictive capabilities of ML can reduce 
the need for extensive fieldwork and laboratory testing, leading to long-term cost savings. 
 
3.2 Challenges And Limitations 
 
Despite the significant potential of ML in water quality assessment, several challenges must 
be addressed: 
Data Quality and Availability: The effectiveness of ML models is heavily dependent on the 
quality and quantity of the data used for training. In many regions, especially in developing 
countries, the lack of high-quality, comprehensive datasets poses a significant challenge. 
Data may be sparse, inconsistent, or biased, leading to inaccurate predictions and unreliable 
models. 
Model Generalization: ML models trained on data from specific geographic locations or 
under certain conditions may not generalize well to other areas or different environmental 
conditions. This limits the applicability of ML in diverse and dynamic water systems. 
Interpretability of Models: While ML models, especially deep learning models, can achieve 
high predictive accuracy, they often operate as "black boxes," making it difficult to 
understand the reasoning behind their predictions. This lack of interpretability can be a 
barrier to their adoption, particularly in regulatory or policy-making contexts where 
transparency is crucial. 
Computational Resources: Training advanced ML models, particularly deep learning 
models, requires substantial computational power and resources. This can be a limiting 
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factor for organizations or regions with limited access to high-performance computing 
infrastructure. 
Integration with Existing Systems: Integrating ML models into existing water quality 
monitoring frameworks can be complex. Legacy systems may not be compatible with the 
data formats or computational requirements of ML models, necessitating significant 
upgrades or redesigns. 
 
3.3 Opportunities For Improvement 
 
To overcome the challenges associated with the application of ML in water quality 
assessment, several opportunities for improvement can be explored: 
Enhancing Data Collection: Efforts should be made to improve the quality and availability 
of water quality data. This could involve the deployment of more sophisticated sensors, the 
integration of satellite data, and the establishment of standardized protocols for data 
collection and reporting. 
Hybrid Models: Combining ML with traditional modeling approaches or using ensemble 
methods can improve model generalization and robustness. Hybrid models that incorporate 
physical, chemical, and biological principles alongside data-driven insights could provide a 
more comprehensive understanding of water quality. 
Improving Model Interpretability: Developing more interpretable ML models, such as 
decision trees or linear models, or incorporating techniques like SHAP (Shapley Additive 
exPlanations) and LIME (Local Interpretable Model-agnostic Explanations), can help 
bridge the gap between model accuracy and interpretability. 
Accessible Computational Resources: The rise of cloud computing and the availability of 
AI-as-a-service platforms can democratize access to the computational resources needed for 
ML, making it easier for organizations of all sizes to implement advanced models. 
Cross-Disciplinary Collaboration: The successful application of ML in water quality 
assessment requires collaboration between data scientists, environmental scientists, 
engineers, and policymakers. Cross-disciplinary partnerships can help ensure that ML 
models are not only technically sound but also practically relevant and aligned with 
environmental goals. 

4 WATER QUALITY MONITORING 
Chen et al. (2020) analyzed extensive data from major rivers and lakes in China between 

2012 and 2018 [34] to assess the performance of ten machine learning models in predicting 
water quality. They evaluated the models using precision, recall, F1-score, weighted F1-
score, and key water quality factors. The results showed that large datasets significantly 
improved the accuracy of water quality predictions. 

The study included ten machine learning models: seven widely used ones—Logistic 
Regression (LR), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), 
Decision Tree (DT), Completely Random Tree (CRT), Naive Bayes (NB), and k-Nearest 
Neighbors (KNN)—and three newly developed ensemble learning models—Random Forest 
(RF), Completely Random Tree Forest (CTF), and Deep Cascade Forest (DCF). Among 
these, DT, RF, and DCF exhibited superior performance, particularly when trained with 
specific datasets for pH, Dissolved Oxygen (DO), Chemical Oxygen Demand (CODMn), 
and Ammonia Nitrogen (NH3-N). The study identified two critical sets of water parameters 
that could enhance the prediction of water quality, highlighting DT, RF, and DCF as the 
most effective models for future monitoring and early warning systems. The results 
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indicated that increasing the training data from 1% to 10% significantly improved model 
performance, emphasizing the importance of large datasets and key water parameters in 
enhancing prediction accuracy. 

In Lu and Ma's (2020) study [35], two novel hybrid decision tree-based models were 
proposed to improve water quality predictions. These models combined Extreme Gradient 
Boosting (XGBoost) and Random Forest (RF) with Complete Ensemble Empirical Mode 
Decomposition with Adaptive Noise (CEEMDAN), an advanced data denoising method. 
The models were applied to 1,875 hourly data points from the Gales Creek site in the 
Tualatin River, known for its high pollution levels, to predict indicators such as temperature, 
dissolved oxygen, pH, specific conductance, turbidity, and fluorescent dissolved organic 
matter. 

The study introduced two hybrid models: CEEMDAN-XGBoost and CEEMDAN-RF, 
which utilized CEEMDAN to preprocess raw data with large fluctuations, enhancing the 
prediction performance of XGBoost and RF. Performance was evaluated using six error 
metrics and compared with four conventional models. The CEEMDAN-RF model excelled 
in predicting water temperature, dissolved oxygen, and specific conductance, with Mean 
Absolute Percentage Errors (MAPEs) of 0.69%, 1.05%, and 0.90%, respectively. The 
CEEMDAN-XGBoost model performed best for pH, turbidity, and fluorescent dissolved 
organic matter, with MAPEs of 0.27%, 14.94%, and 1.59%, respectively. The average 
MAPEs for these models were the lowest, indicating superior overall prediction 
performance. The stability of both hybrid models was higher compared to benchmark 
models. Despite high prediction accuracy, future research should consider additional factors 
affecting water quality and explore parallel computing to address the high demand for short-
term predictions. 

Solanki et al. (2015) developed a water quality prediction model using deep learning 
techniques [36]. Their study utilized data from the Chaskaman River near Nasik, 
Maharashtra, India, which was analyzed using the WEKA tool. The research found that 
unsupervised learning techniques, specifically denoising autoencoders and deep belief 
networks, were more effective at predicting variable data compared to supervised learning 
techniques. Accuracy was assessed using criteria such as mean absolute error and mean 
square error. The data showed significant fluctuations in turbidity, pH, and dissolved 
oxygen, with turbidity exhibiting the greatest variation during the monsoon season. Data 
were categorized into three seasonal groups—winter, summer, and monsoon—using 
clustering techniques. Missing values were replaced with the mean of available values 
through data cleaning. Traditional techniques, including Multi-layer Perceptron and Linear 
Regression, were compared with the deep learning approach of Deep Belief Networks. The 
study concluded that unsupervised learning methods could accurately predict variable data, 
with turbidity showing the highest variation during the monsoon season. pH exhibited 
minimal variation, and dissolved oxygen showed slight variation during the summer. The 
water quality prediction model can be employed for continuous monitoring and to address 
uncertain conditions. 

Kim et al. (2013) evaluated the efficacy of three machine learning techniques—Random 
Forest, Cubist, and Support Vector Regression (SVR)—using Geostationary Ocean Colour 
Imager (GOCI) satellite data to estimate chlorophyll-a (chl-a) and suspended particulate 
matter (SPM) concentrations in two regions on South Korea's west coast [37]. Due to the 
limited number of samples, the effectiveness of the models was assessed using leave-one-
out cross-validation (CV) and in situ measurements collected over four days in 2011 and 
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2012. The results indicated that SVR outperformed the other techniques. The study also 
highlighted the importance of discussing the spatiotemporal distributions of water quality 
metrics in relation to tidal phases using hourly GOCI images. 

Khan and See (2016) proposed a model using Machine Learning techniques to predict 
future water quality trends based on current data [38]. They employed Artificial Neural 
Networks (ANN) with Nonlinear Autoregressive (NAR) time series analysis for efficient 
prediction and analysis. Four water quality metrics—chlorophyll, specific conductance, 
dissolved oxygen, and turbidity—were measured. The goal was to develop models that 
forecast future values using current parameter values. Performance metrics such as 
regression, mean squared error (MSE), and root mean square error (RMSE) were used to 
evaluate four ANN models. The results demonstrated the viability of the proposed ANN-
NAR model, showing enhanced prediction accuracy. 

Haghiabi et al. (2018) assessed the effectiveness of artificial intelligence techniques, 
including ANN, Group Method of Data Handling (GMDH), and Support Vector Machine 
(SVM), for predicting various components of water quality in the Tireh River, located in 
southwest Iran [39]. The study tested various transfer and kernel functions, leading to the 
development of ANN and SVM models. Results showed that both models performed as 
expected, with the radial basis function (RBF) and tansig functions yielding the best results 
among those examined. While the GMDH model performed adequately, it was less accurate 
compared to ANN and SVM. All models exhibited some overestimation, but the SVM 
model proved to be the most accurate. The study provided insights into the internal 
relationships between water quality components, with the ANN model utilizing two hidden 
layers and the SVM model employing RBF and tansig functions. 

Guo et al. (2014) developed two machine learning models—Artificial Neural Network 
(ANN) and Support Vector Machine (SVM)—to forecast the effluent total nitrogen (T-N) 
concentration at a wastewater treatment plant in Ulsan, Korea [9]. They optimized model 
parameters and evaluated performance using pattern search methods and sensitivity 
analysis, incorporating daily water quality and meteorological data as input parameters. The 
results showed that both models could accurately predict the effluent's T-N concentration 
over a 1-day interval. While the SVM model demonstrated superior prediction accuracy, the 
sensitivity analysis revealed that the ANN model was more reliable in understanding the 
cause-and-effect relationship between T-N concentration and input values for integrated 
food waste and wastewater treatment. Consequently, the ANN model was deemed more 
suitable for decision-making and process control. The study suggests that machine learning 
models can serve as reliable tools for early warning and water quality control in wastewater 
treatment. Future research could enhance the accuracy of ANN and SVM models by 
incorporating long-term data sampling. 

Li et al. (2020) evaluated the effectiveness of ANN and SVM models in predicting Total 
Nitrogen (TN) and Total Phosphorus (TP) levels in an agricultural drainage river in eastern 
China [40]. The study aimed to examine the relative importance of input variables and 
discuss strategies for improving water quality. Sensitivity analyses were performed on both 
models using monthly, bimonthly, and trimonthly datasets. The findings indicated that SVM 
models outperformed ANN models in forecasting precision and generalization ability. The 
study recommends SVM models as a potent alternative for more accurate and effective 
water quality predictions in agricultural watersheds. Sensitivity analyses for SVM and ANN 
models can help managers quickly identify spatiotemporal water quality fluctuations due to 
natural and anthropogenic changes in agricultural drainage rivers. 
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Chen et al. (2023) proposed a technique for accurately estimating urban river water 
quality using remote sensing data from multiple sources, even with limited sample 
availability [41]. Their goal was to address scale inconsistencies among remote sensing 
datasets and achieve efficient, large-scale water quality inversion. To tackle the complex 
nonlinear relationships between ground point data and remote sensing data, they suggested 
a self-optimizing machine learning approach that automatically finds optimal model 
parameters from a small number of samples, thereby reducing training time. The researchers 
used feature enhancement and spatial mapping methods to ensure consistency in water 
quality information. The results demonstrated that their method accurately estimated 
chlorophyll a, turbidity, and ammonia nitrogen from UAV and satellite images. The study 
introduces a novel technique for integrating air-space-ground monitoring of urban inland 
rivers. However, monitoring accuracy is limited by data availability, and further research is 
needed to address potential errors in spatial mapping. The researchers recommend 
expanding monitoring frequency and range to include seasonal and annual assessments of 
urban river water quality. 

Imani et al. (2020) developed an application for predicting water quality resilience using 
ANN and the Fuzzy Analytic Hierarchy Process [42]. The model accurately forecasts 
resilience, identifying vulnerable areas for improved water management. The Bayesian 
Regularization algorithm demonstrated superior performance in predicting water quality 
resilience. The study proposes integrating resilience mapping into the annual report of São 
Paulo state's environmental agency for more effective planning. This approach could 
support water supply maintenance and be enhanced by incorporating real-time data 
monitoring systems for a more dynamic resilience prediction system. 

Ahmed et al. (2022) proposed an enhanced water quality index (WQI) method using a 
semi-supervised machine learning technique to assess water quality. This approach 
addresses the limitations of traditional methods, which are often time-consuming, 
expensive, biased toward physico-chemical parameters, and reliant on a large number of 
parameters [43]. The proposed method involves parameter selection, weight assignment, 
sub-index calculation, sub-index aggregation, and classification. For the Rawal watershed 
in Pakistan, data on physical-chemical, atmospheric, meteorological, and hydrological 
topography parameters were collected. The new technique achieved a 100% classification 
rate, eliminating the need to include all criteria for classification. The study demonstrated 
that this method, which incorporates a broad range of parameters and machine learning 
techniques, accurately classified the stream network. It assigned high scores to variables 
such as electrical conductivity, Secchi disc depth, dissolved oxygen, lithology, and geology, 
using feature tree-based techniques like LightGBM, Random Forest, CatBoost, AdaBoost, 
and XGBoost. The findings suggest that this improved method can reduce the uncertainties 
associated with previous approaches, contribute to global water management planning, and 
warrant further investigation for other water bodies. 

In a review paper, Zhu et al. (2022) discussed the application of machine learning 
algorithms in assessing water quality across various contexts, including drinking water, 
sewage, ocean, and surface and groundwater [8]. The review examined the performance of 
machine learning in different aquatic environments, highlighting the benefits and limitations 
of commonly used methods. While machine learning has proven effective in predicting 
water quality, optimizing resource allocation, and managing water shortages, challenges 
remain in fully leveraging these techniques due to difficulties in obtaining accurate data and 
the complexity of real-world water treatment and management systems. The review suggests 
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overcoming these challenges by developing more advanced sensors, enhancing the 
feasibility and reliability of algorithms, and training interdisciplinary professionals to 
advance machine learning techniques and their application in engineering practices. 

Hassan and Woo's systematic review in 2021 aimed to evaluate the usefulness of machine 
learning (ML) approaches for assessing water quality indicators from satellite data [44]. The 
study reviewed data from Scopus, Web of Science, and IEEE citation databases, identifying 
113 qualifying studies from an initial search of 1796 publications. The review found that 
the most commonly used ML models for retrieving water quality parameters included ANN, 
RF, SVM, regression, Cubist, genetic programming (GP), and DT. Typical indicators of 
water quality identified were turbidity, temperature, salinity, colored dissolved organic 
matter, and chlorophyll-a. The review concluded that ML can effectively monitor water 
quality, enabling researchers to predict and learn from natural environmental processes and 
assess human impacts on ecosystems. These insights can support policymakers and water 
resource managers in preventing water pollution and ensuring compliance with 
environmental regulations. 

 
4.1 Projects Using IOT And Machine Learning 

Various projects and studies have explored the simultaneous use of IoT and machine 
learning (ML) in water quality monitoring and related applications. Initially, ML was 
primarily viewed as a tool for generating predictive models for wireless sensor networks 
(WSNs) and IoT systems. However, as ML applications expanded, it became evident that 
ML could offer significant benefits when applied to WSNs or IoT [45]. 

Adeleke et al. (2023) sought to develop and assess the effectiveness of ML and IoT in 
water storage stations [46]. They created a system prototype and evaluated its performance 
using classification and reliability metrics. The study analyzed physical and chemical water 
parameters such as temperature, pH, turbidity, dissolved oxygen, total dissolved solids, 
oxidation-reduction potential, and electrical conductivity to assess water pollutants in 
drinking water. ANN and SVM machine learning algorithms were employed to predict the 
impurity levels in the water based on sensor data. An automated water treatment method 
was also introduced to address specific contamination levels. The study found that the ANN 
models outperformed the SVM models. The research concluded that combining AI and IoT 
is effective for remote monitoring of water conditions and that automated water treatment 
systems offer significant advantages in mitigating water pollution. 

Jha et al. (2020) proposed a two-phase approach to develop a framework for cloud-based 
water quality monitoring [47]. In the first phase, they surveyed existing water monitoring 
systems, and in the second phase, they designed a framework to evaluate groundwater 
quality in communal or overhead tanks. Sensors monitored parameters such as turbidity, 
TDS, conductivity, BOD, nitrate, fecal coliform, and pH. The sensor data was analyzed in 
a cloud-based environment called Ubidots using machine learning methods. The decision 
tree classifier achieved a classification accuracy of 84% on a dataset of 307 records. The 
study suggested extending the research using big data stream processing in a Spark 
framework for distributed contexts. They also recommended a microcontroller-based 
system connected to display systems and mobile devices via GSM and Bluetooth to predict 
water quality. The aim was to prevent health issues caused by contaminated water. 

Chowdhury et al. (2019) proposed a sensor-based water quality monitoring system 
utilizing Wireless Sensor Network (WSN) components, including a microcontroller for 
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processing, a communication system, and various sensors [48]. The system leveraged 
remote monitoring and IoT technology for real-time data access. Sensor data was analyzed 
and compared to benchmark values using Spark streaming analysis, Spark MLlib, deep 
learning neural network models, and the Belief Rule Based (BRB) system. Automated SMS 
alerts were sent if the measured values exceeded threshold limits. The system's high 
frequency, mobility, and low power consumption were notable features. The goal was to 
continuously monitor river water quality in off-grid locations with minimal cost and energy 
consumption while maintaining high detection accuracy. The study emphasized using Big 
Data Analytics and IoT for real-time monitoring and suggested that the system could be 
expanded to include other parameters such as total dissolved solids, chemical oxygen 
demand, and dissolved oxygen. 

Wu et al. (2020) aimed to classify water images into "clean" and "polluted" categories 
for a water pollution monitoring system that utilized IoT technology to capture water images 
[49]. The authors identified challenges in water image classification due to low inter-class 
and high intra-class variability. To enhance feature representation, they proposed an 
attention neural network that encoded channel-wise and multi-layer properties. They 
constructed a hierarchical attention neural network using a channel-wise attention gate 
structure and conducted comparative experiments on an image dataset related to water 
surfaces. The proposed neural network was integrated into a water image-based pollution 
monitoring system for real-time monitoring and immediate response. The authors also 
aimed to improve the network by incorporating the ability to handle mixed pollutants and 
developing a lightweight version for low-resource platforms. 

Pappu et al. (2017) monitored water quality in residential storage tanks [50]. Their system 
used a pH sensor and TDS meter to measure water quality parameters, employing K-Means 
clustering to predict water quality based on trained datasets from various water samples. 
Implemented with low-cost embedded devices like Arduino Uno and Raspberry Pi 3, the 
system analyzed sensor data using the K-Means clustering algorithm. The advantages of 
this algorithm included faster processing, tighter clusters, and relative efficiency. The 
system used Arduino as the microcontroller and Raspberry Pi 3 as the processing unit, with 
pH and TDS sensors deployed in the water and connected to the Arduino microcontroller. 
Results were updated on a cloud server. The system was fully automated and used IoT 
technologies for device communication and water quality prediction. It could be extended 
to ponds, rivers, and water pipes, though data security and integrity must be ensured during 
transmission for analysis and control of the water tank valve and storage area. 

Sagan et al. (2020) demonstrated that machine learning could significantly optimize 
water quality monitoring by combining sensor data from real-time monitoring with satellite 
data [51]. Models such as partial least squares regression, support vector regression, and 
deep neural networks showed higher accuracy compared to traditional models. However, 
certain water quality variables, such as pathogen concentration, cannot be directly measured 
through remote sensing due to their non-optical nature or lack of high-resolution 
hyperspectral data, though they can be inferred using other measurable data. 

Mustafa et al. (2020) reviewed research published from 2014 to 2020 on the use of 
artificial neural networks (ANNs) in hydrology [52]. Their review highlighted that ANNs 
are a powerful and effective tool for predicting and monitoring water quality parameters, 
yielding satisfactory outcomes. The article discussed various ANN algorithms, their recent 
applications, advantages, and limitations in hydrology. It also emphasized the integration of 
neural networks with other technologies such as ANN-based hindcast models, geographical 
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information systems (GIS), and wireless sensor networks. The review suggested employing 
multiple AI models for water quality prediction and monitoring. For model validation, the 
authors used various numerical indicators, including R, R², RMSE, NSC, and PCC. Future 
hydrology research should explore other soft computing technologies, such as deep learning 
tools, genetic algorithms, random forests, and extreme learning machines. Compared to 
current laboratory-based methods, the review found that utilizing soft computing and 
communication technologies for water system monitoring offers quicker, more effective, 
environmentally friendly alternatives that enhance real-time public health security. 

 

5. CRITICAL REVIEW 
The literature reviewed provides a comprehensive overview of the integration of Internet 

of Things (IoT) and machine learning (ML) technologies in water quality monitoring. It 
highlights the evolution of these technologies from traditional methods and their current 
applications, benefits, and limitations. 

 
5.1 Strengths 

Advancement of Technologies: The review acknowledges the significant advancements 
in IoT and ML technologies, which have expanded their applications in water quality 
monitoring. The shift from traditional methods to these advanced technologies reflects a 
broader trend towards more efficient and accurate data collection and analysis. 

Diverse Applications: The literature covers a wide range of applications, demonstrating 
the versatility of IoT and ML in different contexts. For instance, it includes studies on real-
time water quality monitoring, predictive modeling, and automated water treatment systems. 
This variety underscores the potential of these technologies to address various aspects of 
water management. 

Integration of IoT and ML: The review effectively illustrates how IoT and ML can 
complement each other in water quality monitoring. IoT provides the infrastructure for data 
collection, while ML offers advanced analytical capabilities to interpret this data, thus 
enhancing the overall monitoring process. 

Identification of Key Challenges: The literature review does a commendable job of 
identifying the challenges associated with implementing IoT and ML technologies. Issues 
such as the need for advanced sensors, data quality, hardware and software constraints, and 
the complexity of real systems are crucial considerations for further development. 

 
5.2 Weaknesses 

Limited Discussion on Data Quality and Management: While the review mentions the 
importance of advanced sensors and data quality, it lacks a detailed discussion on the 
specific challenges related to data management and quality control. For instance, the impact 
of data noise, missing values, and the need for data preprocessing in machine learning 
models are not thoroughly explored. 

Insufficient Focus on Interdisciplinary Collaboration: The review briefly touches upon 
the need for interdisciplinary talent but does not delve deeply into how effective 
collaboration between different fields (e.g., environmental science, data science, and 
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engineering) can be fostered. The integration of domain-specific knowledge with 
technological expertise is crucial for the successful implementation of IoT and ML in water 
quality monitoring. 

Lack of Comparative Analysis: The review does not provide a comparative analysis of 
different IoT and ML approaches in water quality monitoring. While individual studies are 
highlighted, a synthesis of their findings to compare the effectiveness of various methods or 
technologies could offer more actionable insights. 

Future Directions: The review suggests that further development is needed in areas such 
as sensor technology and algorithm improvement. However, it does not provide concrete 
recommendations or potential research directions for overcoming the identified challenges. 
More detailed guidance on future research areas could enhance the utility of the review. 

 

6. CONCLUSION 
As a fundamental life source, water quality and condition must be preserved and 

maintained to meet even the most basic human needs. Traditional methods of water quality 
monitoring are no longer the most effective means of conservation, as advancements in IoT 
and machine learning (ML) have addressed previous limitations. IoT and its associated 
services are increasingly integrated into our daily lives, work processes, and business 
operations. Significant ongoing research aims to develop essential components and models 
to support the next generation of internet services, facilitated by numerous interconnected 
devices. Meanwhile, ML remains a powerful tool for harnessing information and data to 
generate predictions and trends, enabling a comprehensive understanding and solution to 
complex problems and systems. 

This paper provides a brief literature review and analysis of research and projects related 
to water quality monitoring using IoT technologies and machine learning algorithms. IoT 
has been utilized in water quality monitoring to collect data from various sensors, analyze 
this data using machine learning algorithms, and provide real-time information for efficient 
water management. However, challenges identified in the literature highlight the need for 
advanced sensors to collect high-quality data and for selecting hardware and software 
configurations that provide necessary feedback while adhering to cost and environmental 
constraints, as well as ensuring ease of application and accessibility for all communities. 

Machine learning is increasingly employed in water environments for various purposes, 
including predicting water quality and managing water resources. Nevertheless, its full 
potential is constrained by challenges such as data availability, the complexity of real 
systems, and the need for specialized knowledge and curated algorithms. To address these 
challenges, there is a need to develop advanced sensors for more accurate data collection, 
improve algorithms and models for broader application, and train interdisciplinary talent in 
advanced machine learning techniques for engineering practices. 

The long-term benefits of using IoT and machine learning for water quality monitoring 
include significant cost savings and efficiency improvements. These technologies enable 
real-time monitoring and analysis, reducing the need for manual sampling and laboratory 
testing, which lowers labor and operational costs. Early detection and automated 
intervention help prevent costly repairs and environmental damage by addressing issues 
before they escalate. Additionally, IoT systems reduce the need for extensive physical 
infrastructure, minimizing infrastructure costs. The scalability and adaptability of these 
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systems allow for efficient resource allocation and continuous optimization, further 
enhancing the overall effectiveness and sustainability of water quality management. 
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