TY - JOUR AU - Islam, M A PY - 2010/03/02 Y2 - 2024/03/29 TI - ANOMALOUS ELECTRODEPOSITION OF Fe-Ni ALLOY COATING FROM SIMPLE AND COMPLEX BATHS AND ITS MAGNETIC PROPERTY JF - IIUM Engineering Journal JA - IIUMEJ VL - 10 IS - 2 SE - Articles DO - 10.31436/iiumej.v10i2.10 UR - https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/10 SP - 108-122 AB - Electrodeposition of Fe-Ni thin films has been carried on copper substrate under various electrodeposition conditions from two simple and six complex baths. Sulfate baths composing of NiSO4. 7H2O, FeSO4.7H2O, H3BO3 and Na2SO4<br />KEYWORDS: Anomalous Electrodeposition, Fe-Ni Coating, Complexing agent, Current Density, Magnetic Property. 1. INTRODUCTION Alloy electrodeposition technologies can extend tremendously the potential of electrochemical deposition processes to provide coatings that require unique mechanical, chemical and physical properties [1]. There has been a great research interest in the development and characterization of iron-nickel (Fe-Ni) thin films due to their operational capacity, economic interest, magnetic and other properties [2]. Due to their unique low coefficient of thermal expansion (CTE) and soft magnetic properties, Fe-Ni alloys have been used in industrial applications for over 100 years [3]. Typical examples of applications that are based on the low CTE of Fe-Ni alloys include: thermostatic bimetals, glass sealing, integrated circuit packaging, cathode ray tube, shadow masks, membranes for liquid natural gas tankers; applications based on the soft magnetic properties include: read-write heads for magnetic storage, magnetic actuators, magnetic shielding, high performance transformer cores. comprise the simple baths whereas complex baths were prepared by adding ascorbic acid, saccharin and citric acid in simple baths. The effect of bath composition, pH and applied current density on coating appearance, composition, morphology and magnetic property were studied. Wet chemical analysis technique was used to analyze the coating composition whereas SEM and VSM were used to study the deposit morphology and magnetic property respectively. Addition of complexing agents in plating baths suppressed the anomalous nature of Fe-Ni alloy electrodeposition. Coatings obtained from simple baths were characterized by coarse grained non-smooth surface with/without microcracks onto it whereas those from complex baths were fine grained with smooth surfaces. Satisfactory saturation magnetization value of 131.13 emu/g in coating was obtained from simple bath. Coatings obtained from complex baths did not show normal magnetization behavior.<br /> ER -