SYNTHETIC ANTIMICROBIAL AGENT AND ANTIMICROBIAL FABRICS: PROGRESS AND CHALLENGES

Authors

  • Norashikin Binti Mat Zain Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang. Lehbuhraya Tun Razak 26300 Kuantan, Pahang Malaysia
  • John Olabode Akindoyo Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang. Lehbuhraya Tun Razak 26300 Kuantan, Pahang Malaysia
  • Mohammad Dalour Hossen Beg Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang. Lehbuhraya Tun Razak 26300 Kuantan, Pahang Malaysia

DOI:

https://doi.org/10.31436/iiumej.v19i2.929

Keywords:

antimicrobial

Abstract

ABSTRACT: Recently, there is a strengthening requirement for antimicrobial fabrics that are resistant to pathogens, offer greater hygiene, and are protective in an active lifestyle. Synthetic compounds have been applied to impart antimicrobial properties to the fabrics.  In this paper, synthetic antimicrobial agents, namely quaternary ammonium compounds (QACs), polyhexamethylene biguanide (PHMB), triclosan, and N-halamine are discussed along with their mechanisms of action. Research has been done on synthetic antimicrobial treatment of fabrics; the tested microorganisms used to determine their efficiency and durability are summarized. It is also found that although synthetic antimicrobial agents have excellent strength to kill the microorganisms, some of these antimicrobial agents are harmful and have adverse effects on the environment, safety, and health. Identification of these problems will provide future challenges to overcome and improve the techniques used for antimicrobial treatment of the fabrics. Based on the infromation presented herein, it is recommended that subsequent studies should consider the use of antimicrobial agents that are either obtained from plant sources or from microorganisms. On the other hand, nanotechnlogy should be explored for production of antimicrobial agents in further studies based on its potential to facilitate the production of environmentally benign antimicrobial agents.

ABSTRAK: Kebelakangan ini, permintaan terhadap fabrik antimikrobial bagi mencegah jangkitan patogen, penjagaan kebersihan dan perlindungan bagi gaya hidup yang aktif semakin meningkat. Sebatian sintetik telah diguna pakai bagi menambah sifat antimikrobial pada fabrik. Di dalam artikel ini, agen antimikrob sintetik yang dinamakan sebagai sebatian ammonium kuater (QAC), polyhexamethylene biguanide (PHMB), triclosan dan N-halamine serta mekanisma tindak balasnya telah dibincangkan. Penyelidikan telah dijalankan terhadap fabrik yang dirawat menggunakan agen antimikrob sintetik. Mikroorganisma yang digunakan bagi menentukan kecekapan dan daya tahan turut diringkaskan. Keputusan menunjukkan agen antimikrobial sintetik mempunyai tindak balas yang sangat baik untuk membunuh mikroorganisma, namun sebahagian agen antimikrobial ini berbahaya dan mempunyai kesan buruk terhadap alam sekitar, keselamatan dan kesihatan. Melalui kaedah kenal pasti masalah, ia dapat memberi solusi dan membaiki teknik rawatan antimikrobial pada fabrik pada masa hadapan. Hasil keputusan dan perbincangan menunjukkan kajian seterusnya harus menimbang penggunaan agen antimikrobial yang diperoleh dari sumber tumbuhan. Selain itu, nanoteknologi harus diterokai bagi pengeluaran agen antimikrobial berdasarkan potensinya yang mesra alam.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Akira A. Functional fibers and finishes for humans. Senisha, Inc: Osaka, Japan 1995.

Sun G, Worley SD. (2005) Chemistry of durable and regenerable biocidal textiles. Journal of Chemical Education, 82:60.

Esteban-Cubillo A, Pecharromán C, Aguilar E, Santarén J, Moya JS. (2006) Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J. Materials Science, 41:5208-5212.

Simoncic B, Tomsic B. (2010) Structures of novel antimicrobial agents for textiles - A review. Textile Research Journal, 80:1721-1737.

Gouveia IC. (2010) Nanobiotechnology: A new strategy to develop non-toxic antimicrobial textiles for healthcare applications. J. Biotechnology, 150:349.

Hammer TR, Mucha H, Hoefer D. (2012) Dermatophyte susceptibility varies towards antimicrobial textiles. Mycoses, 55:344-351.

Song L, Zheng W, Jian-cheng Q, Jin-hui W, Tao T, Li-li H, et al. (2011) One-pot fabrication and antimicrobial properties of novel PET nonwoven fabrics. Biomedical Materials, 6:045009.

Montazer M, Pakdel E, Behzadnia A. (2011) Novel feature of nano-titanium dioxide on textiles: Antifelting and antibacterial wool. J. Applied Polymer Science, 121:3407-3413.

Balachandra Nair R, Ramachandranna PC. (2010) Patenting of microorganisms: Systems and concerns. J. Commercial Biotechnology 16:337-347.

Zhang Y, Xu Q, Fu F, Liu X. (2016) Durable antimicrobial cotton textiles modified with inorganic nanoparticles. Cellulose, 23:2791-2808.

Yu Q, Wu Z, Chen H. (2015) Dual-function antibacterial surfaces for biomedical applications. Acta Biomaterialia, 16:1-13.

Montazer M, Afjeh MG. (2007) Simultaneous x-linking and antimicrobial finishing of cotton fabric. Journal of Applied Polymer Science, 103:178-185.

Wasif A, Laga S. (2009) Use of nano silver as an antimicrobial agent for cotton. AUTEX Res J, 9:5-13.

Sajitz M, Grohmann J. (2011) Hygiene effects of bleach systems in laundry detergents. SÖFW-Journal, 137.

Zhang S, Yang X, Tang B, Yuan L, Wang K, Liu X, et al. (2018) New insights into synergistic antimicrobial and antifouling cotton fabrics via dually finished with quaternary ammonium salt and zwitterionic sulfobetaine. Chemical Engineering Journal, 336:123-132.

Benn TM, Westerhoff P. (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science & Technology, 42:4133-4129.

Percival SL, Bowler PG, Russell D. (2005) Bacterial resistance to silver in wound care. Journal of Hospital Infection, 60:1-7.

Cha J, Lee WB, Park CR, Cho YW, Ahn C-H, Kwon IC. (2006) Preparation and characterization of cisplatin-incorporated chitosan hydrogels, microparticles, and nanoparticles. Macromolecular Research, 14:573-578.

Iyigundogdu ZU, Demir O, Asutay AB, Sahin F. (2017) Developing novel antimicrobial and antiviral textile products. Applied Biochemistry and Biotechnology, 181:1155-1166.

Lim S-H, Hudson SM. (2004) Application of a fiber-reactive chitosan derivative to cotton fabric as an antimicrobial textile finish. Carbohydrate Polymers, 56:227-234.

Yazhini KB, Prabu HG. (2015) Antibacterial activity of cotton coated with ZnO and ZnO-CNT composites. Applied Biochemistry and Biotechnology, 175:85-92.

Gao Y, Cranston R. (2008) Recent advances in antimicrobial treatments of textiles. Textile Research Journal, 78:60-72.

GarcıÌa MT, Ribosa I, Guindulain T, Sánchez-Leal J, Vives-Rego J. (2001) Fate and effect of monoalkyl quaternary ammonium surfactants in the aquatic environment. Environmental Pollution 111:169-175.

Song J, Kong H, Jang J. (2011) Bacterial adhesion inhibition of the quaternary ammonium functionalized silica nanoparticles. Colloids and Surfaces B: Biointerfaces, 82:651-656.

Majumdar P, Lee E, Gubbins N, Stafslien SJ, Daniels J, Thorson CJ, et al. (2009) Synthesis and antimicrobial activity of quaternary ammonium-functionalized POSS (Q-POSS) and polysiloxane coatings containing Q-POSS. Polymer, 50:1124-1133.

Majumdar P, He J, Lee E, Kallam A, Gubbins N, Stafslien SJ, et al. (2010) Antimicrobial activity of polysiloxane coatings containing quaternary ammonium-functionalized polyhedral oligomeric silsesquioxane. J. Coatings Technology and Research, 7:455-467.

McDonnell G, Russell AD. (1999) Antiseptics and disinfectants: activity, action, and resistance. Clinical microbiology reviews, 12:147-179.

Krebs FC, Miller SR, Ferguson ML, Labib M, Rando RF, Wigdahl B. (2005) Polybiguanides, particularly polyethylene hexamethylene biguanide, have activity against human immunodeficiency virus type 1. Biomedicine & Pharmacotherapy, 59:438-445.

Tang Y, Zhao Y, Wang H, Gao Y, Liu X, Wang X, et al. (2012) Layer-by-layer assembly of antibacterial coating on interbonded 3D fibrous scaffolds and its cytocompatibility assessment. J. Biomedical Materials Research Part A, 100A:2071-2078.

Pinto F, Maillard JY, Denyer SP, McGeechan P. (2010) Polyhexamethylene biguanide exposure leads to viral aggregation. J. Applied Microbiology, 108:1880-1888.

Broxton P, Woodcock PM, Gilbert P. (1983) A study of the antibacterial activity of some polyhexamethylene biguanides towards Escherichia coli ATCC 8739. J. Applied Bacteriology, 54:345-353.

Ikeda T, Ledwith A, Bamford CH, Hann RA. (1984) Interaction of a polymeric biguanide biocide with phospholipid membranes. Biochimica et Biophysica Acta (BBA) – Biomembranes, 769:57-66.

Rosin M, Welk A, Kocher T, Majic-Todt A, Kramer A, Pitten FA. (2002) The effect of a polyhexamethylene biguanide mouthrinse compared to an essential oil rinse and a chlorhexidine rinse on bacterial counts and 4-day plaque regrowth. J. Clinical Periodontology, 29:392-399.

Allen MJ, White GF, Morby AP. (2006) The response of Escherichia coli to exposure to the biocide polyhexamethylene biguanide. Microbiology, 152:989-1000.

Lozano N, Rice CP, Ramirez M, Torrents A. (2010) Fate of triclosan in agricultural soils after biosolid applications. Chemosphere, 78:760-766.

Paul KB, Hedge JM, DeVito MJ, Crofton KM. (2010) Short-term exposure to triclosan decreases thyroxine in vivo via upregulation of hepatic catabolism in young Long-Evans Rats. Toxicological Sciences, 113:367-379.

Adolfsson-Erici M, Pettersson M, Parkkonen J, Sturve J. (2002) Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere, 46:1485-1489.

Zorrilla LM, Gibson EK, Jeffay SC, Crofton KM, Setzer WR, Cooper RL, et al. (2009) The effects of triclosan on puberty and thyroid hormones in male Wistar rats. Toxicological Sciences 107:56-64.

Levy CW, Roujeinikova A, Sedelnikova S, Baker PJ, Stuitje AR, Slabas AR, et al. (1999) Molecular basis of triclosan activity. Nature, 398:383.

Orhan M, Kut D, Gunesoglu C. (2009) Improving the antibacterial activity of cotton fabrics finished with triclosan by the use of 1,2,3,4-butanetetracarboxylic acid and citric acid. Journal of Applied Polymer Science, 111:1344-1352.

Orhan M, Kut D, Gunesoglu C. (2007) Use of triclosan as antibacterial agent in textiles. J. Fibre and Textile Research, 32:114-118.

Kocer HB, Cerkez I, Worley SD, Broughton RM, Huang TS. (2011) Cellulose/starch/HALS composite fibers extruded from an ionic liquid. Carbohydrate Polymers, 86:922-927.

Worley SD, Williams DE, Crawford RA. (1988) Halamine water disinfectants. Critical Reviews in Environmental Control, 18:133-175.

Chen Z, Sun Y. (2006) N-Halamine-based antimicrobial additives for polymers: Preparation, characterization, and antimicrobial activity. Industrial & Engineering Chemistry Research, 45:2634-2640.

Kaminski JJ, Bodor N, Higuchi T. (1976) N-halo derivatives III: Stabilization of nitrogen-chlorine bond in N-chloroamino acid derivatives. J. Pharmaceutical Sciences, 65:553-557.

Braun M, Sun Y. (2004) Antimicrobial polymers containing melamine derivatives. I. Preparation and characterization of chloromelamine-based cellulose. J. Polymer Science Part A: Polymer Chemistry, 42:3818-3827.

Akdag A, Okur S, McKee ML, Worley SD. (2006) The stabilities of N−Cl bonds in biocidal materials. J. Chemical Theory and Computation, 2:879-884.

Windler L, Height M, Nowack B. (2013) Comparative evaluation of antimicrobials for textile applications. Environment International, 53:62-73.

Cheng X, Ma K, Li R, Ren X, Huang TS. (2014) Antimicrobial coating of modified chitosan onto cotton fabrics. Applied Surface Science, 309:138-143.

Ren X, Kocer HB, Worley SD, Broughton RM, Huang TS. (2009) Rechargeable biocidal cellulose: Synthesis and application of 3-(2,3-dihydroxypropyl)-5,5-dimethylimidazolidine-2,4-dione. Carbohydrate Polymers, 75:683-687.

Kawabata N, Nishiguchi M. (1988) Antibacterial activity of soluble pyridinium-type polymers. Applied and Environmental Microbiology, 54:2532-2535.

Müller G, Kramer A. (2008) Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J. Antimicrobial Chemotherapy, 61:1281-1287.

Wiegand C, Abel M, Ruth P, Hipler U-C. (2009) HaCaT keratinocytes in co-culture with Staphylococcus aureus can be protected from bacterial damage by polihexanide. Wound Repair and Regeneration, 17:730-738.

Jones RD, Jampani HB, Newman JL, Lee AS. (2000) Triclosan: A review of effectiveness and safety in health care settings. American Journal of Infection Control, 28:184-196.

Tsao TC, Williams DE, Worley SD. (1990) A new disinfectant compound. Industrial & Engineering Chemistry Research, 29:2161-2163.

Fu X, Shen Y, Jiang X, Huang D, Yan Y. (2011) Chitosan derivatives with dual-antibacterial functional groups for antimicrobial finishing of cotton fabrics. Carbohydrate Polymers, 85:221-227.

Lu G, Wu D, Fu R. (2007) Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate. Reactive and Functional Polymers, 67:355-366.

Du W-L, Niu S-S, Xu Y-L, Xu Z-R, Fan C-L. (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate Polymers, 75:385-389.

Kocer HB, Akdag A, Ren X, Broughton RM, Worley SD, Huang TS. (2008) Effect of alkyl derivatization on several properties of N-halamine antimicrobial siloxane coatings. Industrial & Engineering Chemistry Research, 47:7558-7563.

Li R, Hu P, Ren X, Worley SD, Huang TS. (2013) Antimicrobial N-halamine modified chitosan films. Carbohydrate Polymers, 92:534-539.

Gouda M, Ibrahim NA. (2008) New Approach for improving antibacterial functions of cotton fabric. J. Industrial Textiles, 37:327-339.

Docherty KM, Kulpa JCF. (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chemistry, 7:185-189.

Rai M, Yadav A, Gade A. (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27:76-83.

Joshi M, Ali SW, Purwar R, Rajendran S. (2009) Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products.

Grillitsch B, Gans O, Kreuzinger N, Scharf S, Uhl M, Fuerhacker M. (2006) Environmental risk assessment for quaternary ammonium compounds: a case study from Austria. Water Science and Technology, 54:111-118.

Singh R, Jain A, Panwar S, Gupta D, Khare SK. (2005) Antimicrobial activity of some natural dyes. Dyes and Pigments, 66:99-102.

Dastjerdi R, Montazer M. (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids and Surfaces B: Biointerfaces, 79:5-18.

Takai K, Ohtsuka T, Senda Y, Nakao M, Yamamoto K, Matsuoka J, et al. (2002) Antibacterial properties of antimicrobial-finished textile products. Microbiology and Immunology 46:75-81.

Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, et al. (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999−2000: A national reconnaissance. Environmental Science & Technology, 36:1202-1211.

Singer H, Müller S, Tixier C, Pillonel L. (2002) Triclosan: Occurrence and fate of a widely used biocide in the aquatic environment: Field measurements in wastewater treatment plants, surface waters, and lake sediments. Environmental Science & Technology, 36:4998-5004.

Kenawy E-R, Abdel-Hay FI, El-Shanshoury AE-RR, El-Newehy MH. (1998) Biologically active polymers: synthesis and antimicrobial activity of modified glycidyl methacrylate polymers having a quaternary ammonium and phosphonium groups. J. Controlled Release, 50:145-152.

Cakmak I, Ulukanli Z, Tuzcu M, Karabuga S, Genctav K. (2004) Synthesis and characterization of novel antimicrobial cationic polyelectrolytes. European Polymer Journal, 40:2373-2379.

Bhargava HN, Leonard PA. (1996) Triclosan: Applications and safety. American Journal of Infection Control, 24:209-218.

Dayan AD. (2007) Risk assessment of triclosan [Irgasan®] in human breast milk. Food and Chemical Toxicology, 45:125-129.

Hovander L, Malmberg T, Athanasiadou M, Athanassiadis I, Rahm S, Bergman, et al. (2002) Identification of hydroxylated PCB metabolites and other phenolic halogenated pollutants in human blood plasma. Archives of Environmental Contamination and Toxicology, 42:105-17.

Calafat AM, Ye X, Wong L-Y, Reidy JA, Needham LL. (2008) Urinary concentrations of triclosan in the U.S. Population: 2003–2004. Environmental Health Perspectives, 116:303-307.

Wolff MS, Teitelbaum SL, Windham G, Pinney SM, Britton JA, Chelimo C, et al. (2007) Pilot study of urinary biomarkers of phytoestrogens, phthalates, and phenols in girls. Environmental Health Perspectives, 115:116-121.

Crofton KM, Paul KB, DeVito MJ, Hedge JM. (2007) Short-term in vivo exposure to the water contaminant triclosan: Evidence for disruption of thyroxine. Environmental Toxicology and Pharmacology, 24:194-197.

Veldhoen N, Skirrow RC, Osachoff H, Wigmore H, Clapson DJ, Gunderson MP, et al. (2006) The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquatic Toxicology, 80:217-227.

Ioannou CJ, Hanlon GW, Denyer SP. (2007) Action of disinfectant quaternary ammonium compounds against Staphylococcus aureus. Antimicrobial agents and chemotherapy, 51:296-306.

Gaze W, Abdouslam N, Hawkey P, Wellington E. (2005) Incidence of class 1 integrons in a quaternary ammonium compound-polluted environment. Antimicrobial agents and chemotherapy, 49:1802-1807.

McMurry LM, Oethinger M, Levy SB. (1998) Triclosan targets lipid synthesis. Nature, 394:531.

Cerkez I, Worley S, Broughton R, Huang T. (2013) Antimicrobial coatings for polyester and polyester/cotton blends. Progress in Organic Coatings, 76:1082-1087.

Ahmed AESI, Wardell JN, Thumser AE, Avignoneâ€Rossa CA, Cavalli G, Hay JN, Bushell ME. (2011) Metabolomic profiling can differentiate between bactericidal effects of free and polymer bound halogen. J. Applied Polymer Science, 119:709-718.

Li Z, Chen J, Cao W, Wei D, Zheng A, Guan Y. (2018) Permanent antimicrobial cotton fabrics obtained by surface treatment with modified guanidine. Carbohydrate polymers, 180:192-199.

Son Y-A, Kim B-S, Ravikumar K, Lee S-G. (2006) Imparting durable antimicrobial properties to cotton fabrics using quaternary ammonium salts through 4-aminobenzenesulfonic acid–chloro–triazine adduct. European Polymer Journal, 42:3059-3067.

Diz M, Infante MR, Erra P, Manresa A. (2001) Antimicrobial activity of wool treated with a new thiol cationic surfactant. Textile Research Journal, 71:695-700.

Kim HW, Kim BR, Rhee YH. (2010) Imparting durable antimicrobial properties to cotton fabrics using alginate–quaternary ammonium complex nanoparticles. Carbohydrate Polymers, 79:1057-1062.

Kim YH, Sun G. (2001) Durable antimicrobial finishing of nylon fabrics with acid dyes and a quaternary ammonium salt. Textile Research Journal, 71:318-323.

Zhu P, Sun G. (2004) Antimicrobial finishing of wool fabrics using quaternary ammonium salts. Journal of Applied Polymer Science, 93:1037-1041.

Kawabata A, Taylor JA. (2007) The effect of reactive dyes upon the uptake and antibacterial efficacy of poly(hexamethylene biguanide) on cotton. Part 3: Reduction in the antibacterial efficacy of poly(hexamethylene biguanide) on cotton, dyed with bis(monochlorotriazinyl) reactive dyes. Carbohydrate Polymers, 67:375-389.

Goetzendorf-Grabowska B, Królikowska H, Gadzinowski M. (2004) Polymer microspheres as carriers of antibacterial properties of textiles: a preliminary study. Fibres & Textiles in Eastern Europe, 12:62-64.

Lu J, Hill MA, Hood M, Greeson DF, Horton JR, Orndorff PE, et al. (2001) Formation of antibiotic, biodegradable polymers by processing with Irgasan DP300R (triclosan) and its inclusion compound with β-cyclodextrin. J. Applied Polymer Science, 82:300-309.

Sun Y, Sun G. (2001) Novel regenerable N-halamine polymeric biocides. III. Grafting hydantoin-containing monomers onto synthetic fabrics. J. Applied Polymer Science, 81:1517-1525.

Qian L, Sun G. (2004) Durable and regenerable antimicrobial textiles: Improving efficacy and durability of biocidal functions. J. Applied Polymer Science, 91:2588-2593.

Liu S, Sun G. (2006) Durable and regenerable biocidal polymers: Acyclic N-halamine cotton cellulose. Industrial & Engineering Chemistry Research, 45:6477-6482.

Sun Y, Sun G. (2003) Novel refreshable N-halamine polymeric biocides: Grafting hydantoin-containing monomers onto high performance fibers by a continuous process. Journal of Applied Polymer Science, 88:1032-1039.

Sun Y, Sun G. (2004) Novel refreshable N-halamine polymeric biocides: N-chlorination of aromatic polyamides. Industrial & Engineering Chemistry Research, 43:5015-5020.

Kasiri MB, Safapour S. (2014) Natural dyes and antimicrobials for green treatment of textiles. Environmental Chemistry Letters, 12:1-13.

Kasiri MB, Khataee AR. (2011) Photooxidative decolorization of two organic dyes with different chemical structures by UV/H2O2 process: Experimental design. Desalination, 270:151-159.

Kasiri MB, Aleboyeh H, Aleboyeh A. (2008) Degradation of Acid Blue 74 using Fe-ZSM5 zeolite as a heterogeneous photo-Fenton catalyst. Applied Catalysis B: Environmental, 84:9-15.

Safapour S, Seyed-Esfahani M, Auriemma F, Ruiz de Ballesteros O, Vollaro P, Di Girolamo R, et al. (2010) Reactive blending as a tool for obtaining poly(ethylene terephthalate)-based engineering materials with tailored properties. Polymer, 51:4340-4350.

Sivakumar V, Vijaeeswarri J, Anna JL. (2011) Effective natural dye extraction from different plant materials using ultrasound. Industrial Crops and Products, 33:116-122.

Chen Q, Shen X, Gao H. (2006) One-step synthesis of silver-poly(4-vinylpyridine) hybrid microgels by γ-irradiation and surfactant-free emulsion polymerisation. The photoluminescence characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 275:45-9.

Joshi M, Ali SW, Rajendran S. (2007) Antibacterial finishing of polyester/cotton blend fabrics using neem (Azadirachta indica): A natural bioactive agent. Journal of Applied Polymer Science, 106:793-800.

Haufe H, Muschter K, Siegert J, Böttcher H. (2008) Bioactive textiles by sol–gel immobilised natural active agents. J. Sol-Gel Science and Technology, 45:97-101.

Boh B, Knez E. (2006) Microencapsulation of essential oils and phase change materials for applications in textile products.

Subramani K, Murugan V, Kolathupalayam Shanmugam B, Rangaraj S, Palanisamy M, Venkatachalam R, et al. (2017) An ecofriendly route to enhance the antibacterial and textural properties of cotton fabrics using herbal nanoparticles from Azadirachta indica (neem). J. Alloys and Compounds, 723:698-707.

Selvam RM, Athinarayanan G, Nanthini AUR, Singh AJAR, Kalirajan K, Selvakumar PM. (2015) Extraction of natural dyes from Curcuma longa, Trigonella foenum graecum and Nerium oleander, plants and their application in antimicrobial fabric. Industrial Crops and Products, 70:84-90.

Pinho E, Henriques M, Oliveira R, Dias A, Soares G. (2010) Development of biofunctional textiles by the application of resveratrol to cotton, bamboo, and silk. Fibers and Polymers, 11:271-276.

Downloads

Published

2018-12-01

How to Cite

Zain, N. B. M., Akindoyo, J. O., & Beg, M. D. H. (2018). SYNTHETIC ANTIMICROBIAL AGENT AND ANTIMICROBIAL FABRICS: PROGRESS AND CHALLENGES. IIUM Engineering Journal, 19(2), 10–29. https://doi.org/10.31436/iiumej.v19i2.929

Issue

Section

Chemical and Biotechnology Engineering

Similar Articles

You may also start an advanced similarity search for this article.