SMART PORTABLE CRYOTHERAPY SYSTEM INVOLVING CONTROLLED THERMOELECTRIC COOLING MODULES FOR MEDICAL APPLICATIONS

Authors

  • Naser Kordani Department of Mechanical Engineering, College of Engineering, University of Mazandaran
  • Abbas Rahmani
  • Reza PR Hasanzadeh

DOI:

https://doi.org/10.31436/iiumej.v19i1.791

Abstract

When a person suffers from an injury, there are specific methods of treatment which are recommended according to the type of injury. One of these methods involves Cryotherapy, in which the part of the affected body is exposed to cooling for decreasing the temperature. The aim of this therapeutic method is to decrease cellular metabolism, increase cellular survival, decrease inflammation and reduce pain and spasm.  The system designed in the present study involves the possibility of “smart†treatment using portable thermoelectric cooling devices based on electronic hardware, software and digital control techniques. In the proposed system, all stages of treatment have been performed automatically by using Arduino as the microcontroller to controlling temperature in cryotherapy methods. This research focus on usage of thermoelectric effect with Peltier module for smart electronic cooling and does not involve the usage of chemicals or cooling materials e.g. ice. Smart cooling methods have significant advantages that they are highly accurate and allow precise timing of the treatment especially for the athletes, and for whom the recovery time from injuries is critical. This approach can be fundamentally important for practical investigations relating to the timing of cryotherapy for any type of users.

ABSTRAK: Apabila seseorang mengalami kecederaan, terdapat kaedah rawatan khas yang disyorkan berdasarkan jenis kecederaan. Salah satu kaedah ini melibatkan Krioterapi, di mana sebahagian kawasan badan yang terlibat didedahkan kepada kesejukan untuk megurangkan suhu badan. Tujuan kaedah terapeutik ini adalah bagi mengurangkan metabolisme sel, menambah sel selamat, mengurangkan radang dan mengurangkan sakit dan sentakan. Sistem yang direka dalam kajian ini berkemungkinan melibatkan rawatan bijak yang menggunakan alat penyejuk termoelektrik mudah alih melibatkan peranti elektronik, perisian dan teknik kawalan digital. Dalam sistem cadangan ini, kesemua peringkat rawatan telah dilaksanakan secara automatik menggunakan Arduino sebagai alat mikro-kawalan bagi mengawal suhu dalam kaedah Krioterapi. Fokus kajian ini adalah dengan menggunakan kesan termo-elektrik dengan modul Peltier untuk penyejuk elektronik bijak dan tidak melibatkan penggunaan bahan kimia dan bahan penyejuk seperti ais. Kaedah penyejuk bijak ini mempunyai faedah ketara seperti sangat tepat dan memberi masa rawatan yang jitu terutama untuk atlet, dan kepada sesiapa yang tempoh masa pemulihan kecederaan amat penting untuknya. Pendekatan ini boleh menjadi asas penting bagi penyelidikan praktikal berkaitan masa krioterapi untuk pelbagai jenis pengguna.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

[1] Angelina F, Amilton V, Gracielle VR, Rita de CM, Tania de FS, Gustavo OP & Joao LQD. (2016) Multiple cryotherapy applications attenuate oxidative stress following skeletal muscle injury. Redox Report, pp 1-7.
[2] Elizabeth Q. (2011) First Aid for Soft Tissue Injuries - Start with the PRICE Protocol PRICE first aid guidelines - Protection, Rest, Ice, Compression and Elevation. Medical Review Board.
[3] Chris MB, Seán O, Mark AT, Laurence GR, Domnhall CM and Suzanne M. (2011) Design of a randomised controlled trial comparing standard versus cryokinetic ice applications in the management of acute ankle sprain. ISRCTN, 39-46.
[4] Bleakley CM, McDonough SM, MacAuley DC. (2006) Cryotherapy for acute ankle sprains: a randomized controlled study of two different icing protocols. Br J Sports Med., 640:700-705.
[5] Huang A, McCall JM, Weston MD, Mathur P, Quinn H,Henderson DC, Allen-Mersh TG. (2002) Phase I study of percutaneous cryotherapy for colorectal liver metastasis. Br J Surg 89(3):303- 310.
[6] Hardy M, Woodall W, J Hand T. (1998) Therapeutic effects of heat, cold, and stretch on connective tissue. 11:148-156.
[7] Knight KL. , IL (1995) Human Kinetics, Champaign Cryotherapy in Sport Injury Management.
[8] Kellett J. (1986) Acute soft tissue injuries: a review of the literature. Med Sci Sports Exerc., 18:489-500.
[9] Myrer JW, Measom G, Fellingham GW. J Athl T. (1998) Temperature changes in the human leg during and after two methods of Cryotherapy. 33:25-29.
[10] Swenson C, Sward L, Karlsson J. Scand J. (1996) Cryotherapy in sports medicine. Med Sci Sports, 6:193-200.
[11] Enwemeka CS, Allen C, Avila P, Bina J, Konrad J, Munns S. (2002) Clinical Sciences: Clinically Relevant. Soft tissue thermodynamics before, during, and after cold pack therapy. Medicine & Science in Sports & Exercise, 34(1):45-50.
[12] Hanley J, McKernan A, Creagh MD, Classey S, McLaughlin P, Goddard N, Briggs PJ, Frostick S, Giangrande P, Wilde J, Thachil J, Chowdary P. (2017) Musculoskeletal Working Party of the UKHCDO Guidelines for the management of acute joint bleeds and chronic synovitis in haemophilia. Haemophilia. Doi:10.1111/hae.13201.
[13] Chris MB, Seán O, Mark AT, Laurence GR, Domnhall CM and Suzanne M. (2007) Design of a randomised controlled trial comparing standard versus cryokinetic ice applications in the management of acute ankle sprain. ISRCTN, 1390: 39-46.
[14] Browne GJ, and Barnett, P. LJ. (2016) Common sports-related musculoskeletal injuries presenting to the emergency department. Journal of Paediatrics and Child Health, 52:231-236. doi:10.1111/jpc.13101.
[15] Hotfiel T, Carl H. D, Grim C, Engelhardt M. (2016) Management of Injured Athletes at the Field, Foot and Ankle Sports Orthopedics. DOI 10.1007/978-3-319-15735-1_8.
[16] Brison RJ, Day AG., Pelland L, Pickett W, Johnson AP, Aiken A et al. (2016) Effect of early supervised physiotherapy on recovery from acute ankle sprain: randomised controlled trial. BMJ. 355-i5650.
[17] Ni, Liang H. (2007) Zhejiang University (People's Republic of China): Synthesization and properties of Bi2Te3 based nanocomposite thermoelectric materials, ProQuest LLC. H445368.
[18] Michael JN. (2016) The Effectiveness of Water Vapor Sealing Agents When Used in Application with Thermoelectric Cooling Modules, TE Technology, Inc., 1590 Keane Drive, Traverse City, MI 49686.
[19] Gao M, Rowe DM. (1992) Optimisation of thermoelectric module geometry for waste heat electric power generation. Journal of Power Sources, 38:253-259.
[20] Abbas R, (2012) Smart Cryotherapy Active System by Controlling Thermoelectric Cooling Modules. Iran invention reg office: 77326, date of invention.
[21] Decher R, (1997) Direct Energy Conversion – Fundamentals of electric power production” Oxford University press, Inc., 198 Madison Avenue, New York. ISBN 0-19-509572-3.
[22] Dolan MG. Thornton RM, Fish DR. Mendel FC. (1997) Effects of cold water immersion on edema formation acler blunt injury lo the hind limbs of rats. J Arht Train., 32(3):233-237.
[23] http://www.ti.com/product/LM35.
[24] http://www.atmel.com/products/microcontrollers.
[25] Kerr KM, Daily L, Booth L. (1982) Guidelines for the management of soft tissue (musculoskeletal) injury with protection, rest, ice, compression and elevation (PRICE) during the first 64 hours. London: Chartered Society of Physiotherapy, McMaster WC. Cryotherapy. Physician Sportsmed. 10(11):112-119.
[26] Knight KL, Brucker J, Stoneman PD, Rubley MD. (2000) Muscle injury management with Cryotherapy. Athl Ther Today. 5(4):26-30.
[27] Carol F. (2012) The use of ice in patient management – A brief review the evidence.
[28] Haynes DH, Monaghan WP. (1984) Blood storage and transport in the field using a portable thermoelectric refrigerator: assessment of potential use. Military Medicine. 149(4):184-188.

Downloads

Published

2018-06-01

How to Cite

Kordani, N., Rahmani, A., & Hasanzadeh, R. P. (2018). SMART PORTABLE CRYOTHERAPY SYSTEM INVOLVING CONTROLLED THERMOELECTRIC COOLING MODULES FOR MEDICAL APPLICATIONS. IIUM Engineering Journal, 19(1), 117–128. https://doi.org/10.31436/iiumej.v19i1.791

Issue

Section

Electrical, Computer and Communications Engineering

Most read articles by the same author(s)